

CMOS IC Application Notes

S-5611A Trimming adjustment method via serial interface communication

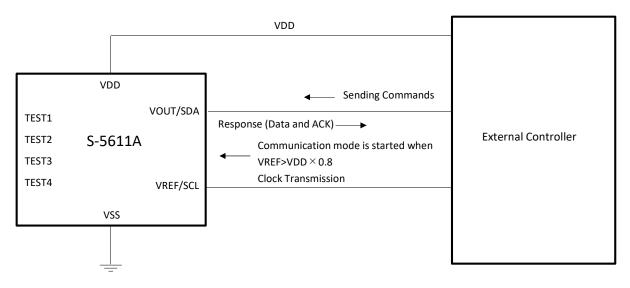
Rev. 2_1_00

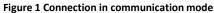
Application Note Overview

This application note describes the following:

- S-5611A communication interface
- \cdot How to enter serial communication operation mode
- Trimming adjustment flow and register mapping

S-5611A communication interface


Communication interface overview


The S-5611A has a built-in EEPROM and a volatile register, and can be programmed by sending commands from an external controller. Can be written/read.

The S-5611A can be powered on by applying a specific voltage (VREF>VDD×0.8) to the VREF/SCL pin.

You can enter serial communication operation mode.

When the S-5611A is put into serial communication operation mode, the VOUT/SDA pin and the VREF/SCL pin are used The 2-wire serial interface is enabled, allowing bidirectional communication between the S-5611A and an external controller.

How to enter serial communication operation mode

■How to start communication

The timing chart below shows the power-on and keyword writing timing for putting the S-5611A

into the serial communication operation mode.

When $VREF > VDD \times 0.8$, VDD is raised to enable register access from the external controller.

Perform the initial communication (write keyword register).

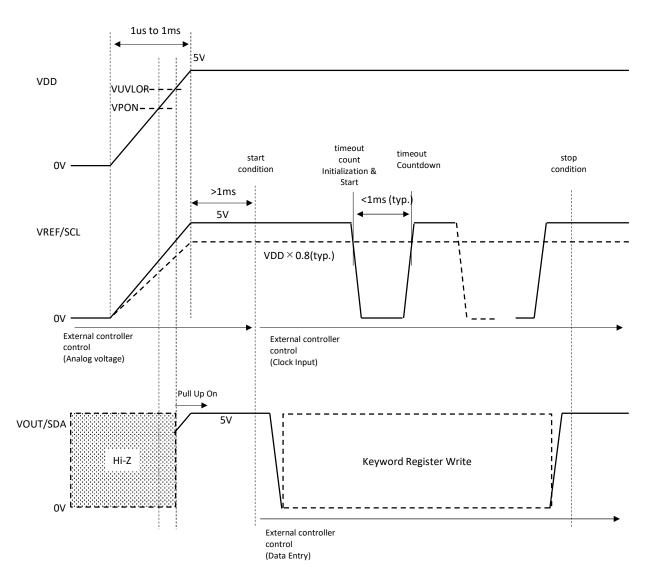


Figure 2 Timing chart for power-on and keyword writing

Capability required to drive the SDA pin and SCL pin during serial communication

In serial communication operation mode, the VOUT/SDA pin is pulled up to VDD by the resistor built into the S-5611A. Therefore the external controller must have sink capability.

The VREF/SCL pin is in a Hi-Z state.

However, in order to re-enter the communication mode (described later), the linear hall sensor operation mode The voltage of the VREF/SCL pin must be VDD x 0.8 or higher. In the linear Hall sensor operation mode, the VREF/SCL pin is not Hi-Z, so the external controller needs source capability.

Sink current required to drive the SDA pin > VDD \div RPU_SDA *15.63mA (max.) Source current required to drive the SCL pin > IREF_SNK *14mA (max.)

• The sink current IREF_SNK of the VREF pin in the linear hall sensor operation mode is Please refer to "1.4 Reference Voltage Characteristics" in the data sheet.

For the pull-up resistor RPU_SDA, refer to "2.3 DC Electrical Characteristics" in the data sheet.

• The above are DC current conditions. In terms of AC, please make sure to meet the conditions in "2.4 AC Electrical Characteristics" of the data sheet.

■Basic communication format

The basic format of data sent from an external controller during serial communication is as shown in Figure 3.

Command transmission begins by inputting a start condition from an external controller to the S-5611A. The device address is sent first, and the read/write is determined by the 0/1 at the end of the device address. If the IC receives the device address correctly, it will return an ACK as a response the next time the clock goes high. In the case of a write, the controller sends a pointer and data, and in the case of a read, the S-5611A outputs data. Finally, a stop condition is input from the controller to the S-5611A to end the command transmission.

*For details on serial communication operation, please refer to the data sheet.

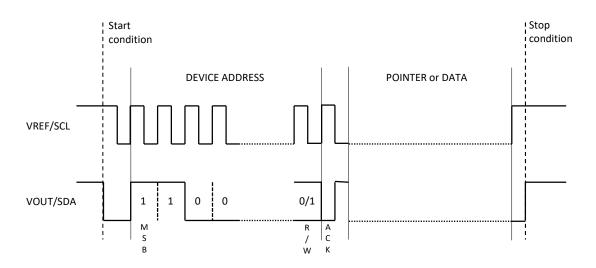
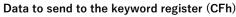
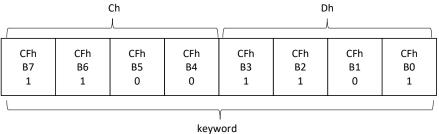


Figure 3 Basic communication format


Write keywords


The initial communication begins with writing a specific keyword to the keyword register.

After that, you will be able to access other registers, and you will be able to change the operation mode

of the S-5611A, adjust the trimming, etc.

- The address of the keyword register is CFh.
- The data (keyword) to be sent is CDh.

How to exit communication mode

To exit communication mode, set the VREF pin to a voltage of VDD \times 0.8 or less after the stop condition. The serial communication operation mode is exited and then the linear hall sensor operation mode is entered.

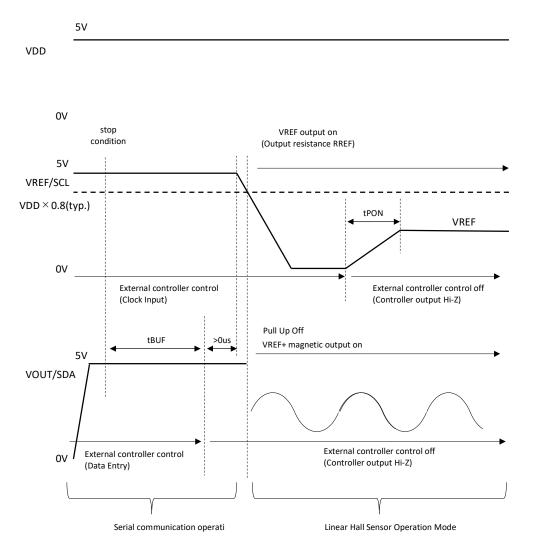


Figure 4 Timing chart for leaving serial communication mode

How to re-enter communication mode

If the keyword CDh is written to the keyword register CFh, the linear hall sensor operation mode

Apply voltage to the VREF pin from an external controller and set VREF \geq VDD \times 0.8

to switch to serial communication operation mode.

You can reinject it.

By turning the power back on, the trimming adjustment can be performed with the linear hall sensor operation mode

and the serial communication operation mode.

Register changes can be made while switching between operating modes without turning off the power.

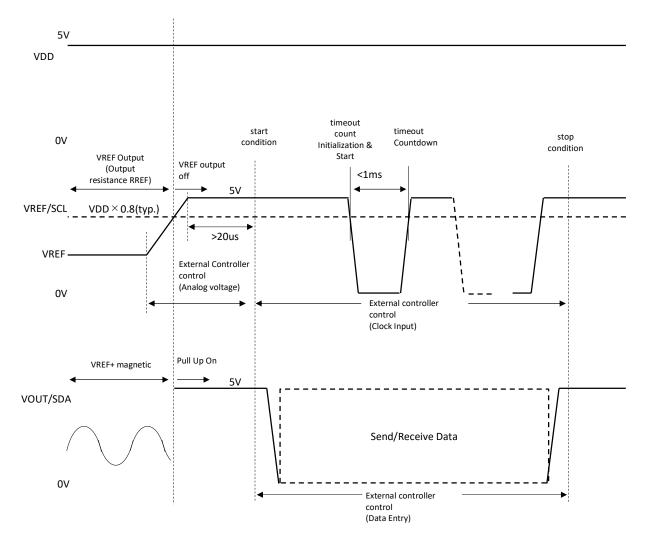


Figure 5. Timing chart when re-entering communication mode

■ Flowchart for initial communication

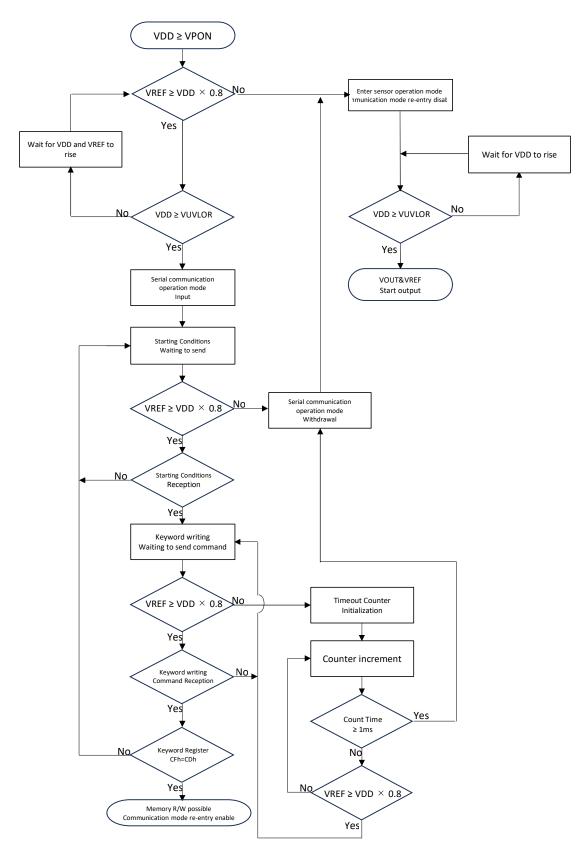


Figure 6 Flowchart of initial communication to enable memory $\ensuremath{\mathsf{R}}/\ensuremath{\mathsf{W}}$

ABLIC Inc.

Trimming adjustment flow

■ How to proceed with trimming and memory configuration

The trimming adjustment of the S-5611A is done by writing to the register in serial communication operation mode and We will now proceed back and forth between measurements in the Linear Hall Sensor operating mode.

The memory of the S-5611A consists of a combination of non-volatile and volatile areas.

00h to 3Fh: Non-volatile memory area 40h to CFh: Volatile memory area

The trimming adjustment data for the S-5611A is stored in addresses 10h to 1Ah and 50h to 5Ah. Addresses 10h to 1Ah are non-volatile areas, and any content written therein is retained even if the power is restarted. Addresses 50h to 5Ah are volatile areas, and any content written therein will be lost when the power is restarted. When the power is turned on, the contents of 10h to 1Ah are stored in addresses 50h to 5Ah.

The characteristics of the S-5611A are adjusted by registers 50h to 5Ah, without referring to the contents of registers 10h to 1Ah. In trimming adjustment, we basically write from 50h to 5Ah. When the finalized trimming results are stored, write to 10h to 1Ah.

Normally, tBUF in Figure 5 described in "2.4 AC Electrical Characteristics" of the data sheet is restricted to min. 13 ms as described in Table 14.

When writing to registers 50h~5Ah, communication is possible with tBUF of min. 1300ns only. Therefore, by using 50h to 5Ah, the time required for adjustment can be shortened.

Overview of the trimming process

The trimming process consists of steps 0 to 10 below. Each step will be explained in detail below.

Step 0 ↓	Load Disable Enable
Step 1	Setting the function switching register
\downarrow	- Thermal shutdown enable/disable
\downarrow	• Output signal polarity
Ļ	Reference voltage
\downarrow	- Frequency bandwidth
\downarrow	
Step 2	Adjustment of magnetic sensitivity temperature drift (not measured)
\downarrow	*Here, adjust the sensitivity without measuring the temperature characteristic.
Ļ	If you want to adjust the sensitivity temperature characteristic
\downarrow	with even higher accuracy, perform steps 7a or 7b.
Step 3	VREF Adjustment
\downarrow \downarrow	*No adjustment is required when using reference voltage input mode.
Step 4 ↓	Magnetic sensitivity coarse adjustment
Step 5 ↓	Output offset voltage temperature drift adjustment
Step 6 ↓	Magnetic Sensitivity Adjustment
Step 7	7a. Magnetic sensitivity temperature drift adjustment or 7b. Magnetic sensitivity temperature
Ļ	drift adjustment (with adjustment step measurement)
\downarrow	*Step 7 involves actually measuring and adjusting the temperature drift.
\downarrow \downarrow	This is done when you want to adjust the temperature drift with higher accuracy.
↓	*7a is calculated by leading the temperature characteristic adjustment steps recorded
\downarrow	at the time of shipment.
Ļ	
Ļ	*7b is calculated by measuring the actual temperature adjustment steps.
\downarrow	Since there are more measurement steps, the adjustment time increases, but
Ļ	Sensitivity and temperature characteristics can be adjusted with higher precision than 7a
Ļ	
Step 8 ↓	Offset Adjustment
Step 9 ↓	Write trimming results to non-volatile address
Step 10	Write Protect
	*Once write protection is enabled, it cannot be disabled again.
	Please do as necessary.

S-5611A Trimming adjustment method via serial interface communication

Register mapping

The register mapping of the S-5611A is shown below.

Please refer to the trimming flow for how to calculate the data to be written to each register.

	B7	B6	B5	B4	B3	B2	B1	B0
00h		1	1		I		1	1
\sim 08h				Unı	Isea			
09h		Unused			VOUT	_OFF_TC	_ADJ1	
0Ah				VOUT_OFI	F_TC_ADJ2			
0Bh				VOUT_OF	F_TC_ADJ3			
0Ch		Unused			VOUT	_OFF_TC_	_ADJ1	
0Dh				VOUT_OF	TC_ADJ2			
0Eh				VOUT_OFI	TC_ADJ3			
0Fh		Unused	-		SEN	SE_TC_TA	BLE	
	B7 B6 B5 B4 B3 B2 B1					B0		
10h				VOUT_0				
11h		Unused			SENS	E_COARSE	E(11h)	
12h		F	Fixed to "0"	' ("1" write	prohibited)		SENSE_COA RSE(12h)
13h				Unused				TSD_EN
14h				SENSE_F	FINE[7:0]			L –
15h	Unused			SENS	E_TC			SENSE_REV
16h	Unused VREF_SEL VREF_EXT Unused VREF_SE					SEL		
17h	Unused VREF							
18h	Unused							
19h	VOUT_OFF [0]	Adjustment Range Expansion	Unused		VC	OUT_OFF_	ТС	
1Ah	FBW	_SEL	Fixed	to "0" ("1"	write proh	ibited)	SENSE_	FINE[9:8]
1Bh				Llas				
~1Eh				Unı	Iseu			
1Fh				Unused				Write Protect
20h ∼3Fh				No a	ccess			
	B7	B6	B5	B4	B3	B2	B1	B0
40h ~4Eh	Unused							
4Fh	Unused LOAD_DIS							
50h ~5Ah	Same mapping as 10h to 1Ah LOAD_DIS=0b When the linear hall sensor is in operation, the contents of 10h to 1Ah are loaded. LOAD_DIS=1b Do not load when linear hall sensor is in operation.							
5Bh ~5Fh	Unused							
60h ~CEh				No a	ccess			
CFh				Keyword	Register			

- About "unused" areas

Data can be written to the unused areas, but it will not affect the operation of the S-5611A.

• About 4Fh

4Fh can be written to, but when read, all bits are set to "0" regardless of the current register value.

- About "No Access" Areas

An inaccessible area is an area where reading/writing is not possible.

If you send a Read/Write command specifying this address, the IC will return a NACK.

Enable Load Disable

Immediately after power-on, the contents of 50h to 5Ah are overwritten with the same contents

as 10h to 1Ah each time the serial communication operation mode is exited.

By enabling the load disable function, the contents of 50h to 5Ah can be maintained when leaving the mode. Enable load disable before starting trimming.

The load disable function can be enabled/disabled by the LOAD_DIS register (4Fh B0).

Address	bit	Register Name	Register Function
4Fh	B0	LOAD_DIS	Load Disable Enable/Disable

Load disable function enable/disable	LOAD_DIS
invalid	0
valid	1

Data to send to the load disable register (4Fh)

4Fh	4Fh	4Fh	4Fh	4Fh	4Fh	4Fh	4Fh
B7	B6	B5	B4	B3	B2	B1	B0
Γ΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄΄						LOAD_DIS	

* When address 4Fh is read, all bits are output as "0" regardless of the current register value.

Please write LOAD_DIS=1 before starting trimming.

Setting the function switching register

Before fine-tuning VREF, magnetic sensitivity, and output offset voltage, Set the other register contents to the values you would normally use as a sensor.

Address	bit	Register Name	Register Function
53h	В0	TSD_EN	Thermal shutdown enable/disable
55h	В0	SENSE_REV	Output signal polarity selection
56h	B4, B1~B0	VREF_SEL	Reference Voltage Selection
56h	В3	VREF_EXT	Reference voltage operating mode selection
5Ah	B7~B6	FBW_SEL	Frequency Band Selection

- Thermal shutdown enable/disable setting

Thermal shutdown can be enabled or disabled using the TSD_EN register.

Therm	nal shutdov	vn enable/	disable		TSD	_EN	
	inv	alid		0			
	Va	alid				1	
·							
53h	53h	53h	53h	53h	53h	53h	53h
B7	B6	B5	B4	B3	B2	B1	BO
L			γ			J	
			ا Unused				TSD_EN

- Output signal polarity setting

The polarity of the output signal can be switched using the SENSE_REV register. The magnetic sensitivity and output offset voltage are affected by the SENSE_REV setting, so set this first.

Output signal polarity				SENSE_REV			
Positive electrode				0			
The opposite extreme				1			
55h	55h	55h	55h	55h	55h	55h	55h
B7	B6	B5	B4	B3	B2	B1	BO
ι							
Unused	SENSE_TC SENSE_REV						

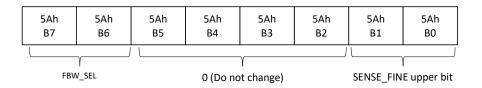
*The method for determining SENSE_TC will be shown in step 2 below.

Reference voltage setting

Reference voltage input mode enable/disable. Can be set in VREF_EXT register (address 56h B3)

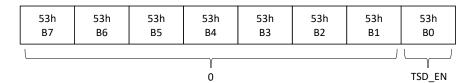
eference Voltage Operation Mod	VREF_EXT
Reference Voltage Output Mode	0
Reference Voltage Input Mode	1

In reference voltage output mode, the magnitude of the reference voltage to be output can be selected by the VREF_SEL register (address 56h B4, B1 to B0).

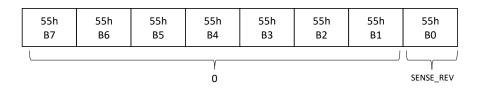

Reference Voltage	VREF_SEL(B4)	VREF_SEL(B1~B0)
2.50	0b	00b
1.65	0b	01b
1.50	1b	10b
0.50	1b	11b

56h	56h	56h	56h	56h	56h	56h	56h
B7	B6	B5	B4	B3	B2	B1	B0
[۲ Unused]	VREF_SEL	VREF_EXT	Unused	VREF	SEL

Frequency bandwidth setting


The frequency bandwidth can be changed using the FBW_SEL register (address 5Ah B7~B6).

Frequency Bandwidth	FBW_SEL
400kHz	00b
200kHz	01b
100kHz	10b


1 Determine and write TSD_EN

*Write 0 to B7 to B1 of address 53h and TSD_EN to B0.

2 Determine SENSE_REV and write

*Write 0 to B7 to B1 of address 55h and SENSE_REV to B0.

3 Determine VREF_SEL and VREF_EXT and write

56h B7	56h B6	56h B5	56h B4	56h B3	56h B2	56h B1	56h B0		
	I				1				
	0		n the table below according to you						

*Select a setting from the table below and determine the value to write to register 56h.

Reference Voltage Operation Mode	Reference Voltage	Input Reference Voltage	B7	B6	B5	B4	B3	B2	B1	B0
Reference Voltage Output Mode	2.50V		0	0	0	0	0	0	0	0
	1.65V		0	0	0	0	0	0	0	1
	1.50V		0	0	0	1	0	0	1	0
	0.50V		0	0	0	1	0	0	1	1
Reference Voltage Input Mode		1.65V ≡ V ≡ 2.65V	0	0	0	0	1	0	0	0
		0.5V ≅ V<1.65V	0	0	0	1	1	0	0	0

4 Read address 5Ah

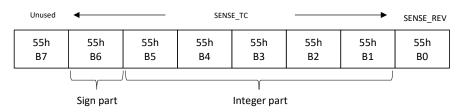
The contents of B1 to B0 are read with the purpose of retransmitting them as is in the next "5"

5 Determine FBW_SEL and write

5Ah B7	5Ah B6	5Ah B5	5Ah B4	5Ah B3	5Ah B2	5Ah B1	5Ah BO
FBV	V_SEL			0	SENSE_FINE upper bit		
Send pre-read cont							

■ Adjustment of magnetic sensitivity temperature drift (not measured)

Before fine-tuning VREF, magnetic sensitivity, and output offset voltage, Adjust magnetic sensitivity temperature drift


Address	bit	Register Name	Feature Name
55h	B6~B1	SENSE_TC	Magnetic Sensitivity Temperature Drift Adjustment

- Setting magnetic sensitivity temperature drift

The magnetic sensitivity temperature drift can be set in the SENSE_TC register (address 55h).

The SENSE_TC register is a total of 6 bits, B6 to B1, at address 15h (55h).

• The format of SENSE_TC is a signed integer (-31 to 31). Integer part: B5 to B1 Sign part: B6 (1=positive 0=negative)

The adjustment step when changing the SENSE_TC register by 1 varies between individual devices. The adjustment steps for each unit are recorded in the SENSE_TC_TABLE (address 0Fh) before shipping.

SENSE_TC_TABLE is a 5-bit unsigned integer (0 to 31).

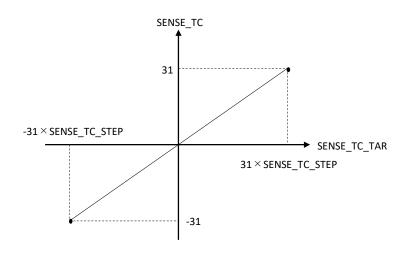
By reading SENSE_TC_TABLE, the correspondence between the value and the temperature drift adjustment amount can be understood in a table.

OFh B7	0Fh B6	0Fh B5	0Fh B4	0Fh B3	0Fh B2	OFh B1	0Fh B0	
1								
	γ		Υ					
	0		SENSE_TC_TABLE					

SENSE_TC_TABLE	Temperature drift adjustment step (ppm/°C)
0	16.80
1	17.55
2	18.29
3	19.04
4	19.78
5	20.53
6	21.27
7	22.02
8	22.76
9	23.51
10	24.25
11	25.00
12	25.74
13	26.49
14	27.23
15	27.98
16	28.72
17	29.47
18	30.21
19	30.96
20	31.70
21	32.45
22	33.19
23	33.94
24	34.68
25	35.43
26	36.17
27	36.92
28	37.66
29	38.41
30	39.15
31	39.90

Table SENSE_TC_TABEL and temperature drift adjustment steps

Adjustment flow for magnetic sensitivity temperature drift


Variable Name	Variable type	explanation		
SENSE TC TABLE IShipment record value		n integer number corresponding to the adjustment step the magnetic sensitivity temperature drift		
SENSE TC STEP Shipment record value		Adjustment steps for magnetic sensitivity temperature drift corresponding to SENSE_TC_TABLE		
SENSE_TC_TAR	Adjustment target value	Adjustment target value for magnetic sensitivity temperature drift		
SENSE_TC_SET	Register setting value	Optimal value of SENSE_TC		

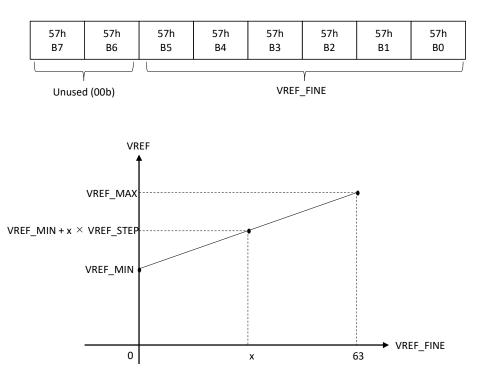
1 Read the SENSE_TC_TABLE

2 Calculate SENSE_TC_SET

- The target magnetic sensitivity temperature drift (ppm/°C) is SENSE_TC_TAR
- The temperature characteristic adjustment step (ppm/°C) corresponding to SENSE_TC_TABEL is set to SENSE_TC_STEP

SENSE_TC_SET = SENSE_TC_TAR ÷ SENSE_TC_STEP *SENSE_TC_SET is rounded off to an integer.

3 Write SENSE_TC Write SENSE_TC=SENSE_TC_SET


* Write 0 to B7 of address 55h, SENSE_TC_SET to B6 to B1, and the SENSE_REV determined in step 1 to B0.

55h B7	55h B6	55h B5	55h B4	55h B3	55h B2	55h B1	55h B0	
γ	ΥΥ							
0			SENSE_REV					

VREF adjustment

How to use the VREF_FINE register

- \cdot B5 to B0 are treated as unsigned integers (0 to 63).
- When writing, the specified integer (0 to 63) is converted to a 6-digit binary number, and B5 to B0 of the transmission data are set, and B7 to B6 are set to 00b.

Adjustment amount of VREF relative to VREF_FINE

VREF_FINE adjustment flow

<Explanation of variables in the flow>

Variable Name	Variable type	explanation
VREF_FINE_INI	Register setting value	VREF_FINE before adjustment
VREF_INI	Measurements	VREF pin voltage before adjustment
VREF_MAX	Measurements	VREF pin voltage when VREF_FINE=63
VREF_MIN	Measurements	VREF pin voltage when VREF_FINE=0 (measured value)
VREF_STEP	Calculated value	The amount of change in the VREF pin voltage when VREF_FINE changes by $+1$
VREF_TAR	Adjustment target value	VREF adjustment target value
VREF_FINE_TRM1	Register setting value	VREF_FINE after adjustment (1st time)
VREF_TRM	Measurements	VREF pin voltage after the first adjustment
VREF_FINE_TRM2	Register setting value	VREF_FINE after adjustment (2nd time)
VREF_TRM2	Measurements	VREF pin voltage after second adjustment

1 Read the VREF_FINE (57h) register. The read result is VREF_FINE_INI.

- 2 Measure the VREF voltage and set the measured value as VREF_INI.
- 3 Write 63 to VREF_FINE(57h)
- 4 Measure the VREF voltage and set the measured value as VREF_MAX.
- 5 Write 0 to VREF_FINE(57h)
- 6 Measure the VREF voltage and set the measured value as VREF_MIN.
- 7 Calculate the new VREF_FINE

VREF_STEP=(VREF_MAX-VREF_MIN) ÷ 63 VREF_TAR = VREF target voltage VREF_FINE_TRM1=(VREF_TAR-VREF_INI) ÷ VREF_STEP+VREF_FINE_INI *VREF_FINE_TRM1 should be rounded off to the nearest integer.

- 8 Write VREF_FINE_TRM1 to VREF_FINE(57h)
- 9 Measure the VREF voltage and set it as VREF_TRM.
 Determine whether the following conditions are met.
 -VREF_STEP ÷ 2 < (VREF_TRM VREF_TAR) < VREF_STEP ÷ 2

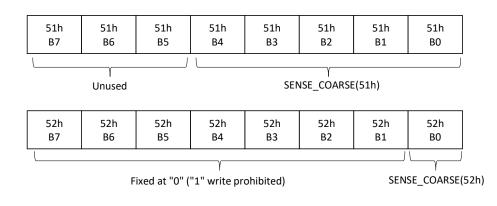
If it is met, proceed to coarse magnetic sensitivity adjustment. If not, perform an additional trimming in the steps from "10" onwards.

- 10 Calculate VREF_FINE_TRM2=(VREF_TAR VREF_TRM) ÷ VREF_STEP+VREF_FINE_TRM1 *VREF_FINE_TRM2 should be rounded off to the nearest integer.
- 11 Write VREF_FINE_TRM2 to VREF_FINE(57h)
- 12 Measure the VREF voltage and set it as VREF_TRM2. Make sure the final VREF voltage meets the required accuracy.

S-5611A Trimming adjustment method via serial interface communication

Magnetic sensitivity coarse adjustment

• How to use the SENSE_COARSE register


SENSE_COARSE is a total of 6 bits, B4 to B0 of address 11h (51h) and B0 of address 12h (52h)
When writing to address 11h (51h), B4 to B0 of the send data should be a 5-bit binary number corresponding to the dB value to be set, and B7 to B5 should be 000b.

• Even if you want to change only SENSE_COARSE, you must send the data of the other bits (B7 to B1) in address 12h (52h). Please set B7 to B1 to 0.

• Refer to the table below and write the binary number that corresponds to the SENSE_CORASE setting.

Relationship	between d	B value and	binary numb	er to be	writter	ו

Setting SENSE_COARSE	Magnetic Sensitivity	SENSE_COARSE(51h)	SENSE_COARSE(52h)
RG1	Factory coarse adjustment settings x 2	0 0000b	Ob
RG2	Factory coarse adjustment	0 0000b	1b
RG3	Factory coarse adjustment setting divided by 2	0 0100ь	lb
RG4	Factory coarse adjustment setting ÷ 4	0 0110b	1b
RG5	Factory coarse adjustment setting ÷8	0 0111b	1b
RG6	Factory coarse adjustment setting \div 16	1 0111b	1b
RG7	Factory coarse adjustment setting ÷ 32	1 1111b	1b

\cdot How to use the SENSE_FINE register

SENSE_FINE is divided into two addresses, B1 to B0 at address 1Ah (5Ah) and B7 to B0

- at address 14h (54h), for a total of 10 bits.
- \cdot The calculation is performed with B1 to B0 of address 1Ah (5Ah) as the upper bits
- and B7 to B0 of address 14h (54h) as the lower bits.
- The format of SENSE_FINE is an unsigned integer (0 to 1023).

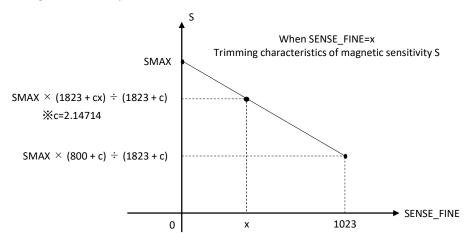
MSB									LSB
5Ah	5Ah	54h	54h	54h	54h B4	54h	54h	54h B1	54h
B1	BO	B7	B6	B5	Б4	B3	B2	ы	BO

Integer part (unsigned)

• Even if you want to change only SENSE_FINE, you need to send the data of other bits (B7 to B2) in address 1Ah (5Ah).

If you do not want to rewrite B7 to B2, read them in advance and send the values read out.

54h 54h


SENSE_FINE lower bit

5Ah B7	5Ah B6	5Ah B5	5Ah B4	5Ah B3	5Ah B2	5Ah B1	5Ah B0
FBW	_SEL	0 (Do not change)				SENSE_FIN	E upper bit

*If you do not want to rewrite FBW_SEL, send the contents that you read in advance.

The relationship between magnetic sensitivity S and SENSE_FINE is relative, and calculations are based on the magnetic sensitivity when SENSE_FINE=0. Using the magnetic sensitivity SMAX when SENSE_FINE=0 as a reference, the adjustment result can be calculated using the following formula.

Magnetic sensitivity S=SMAX \times (1823+c-SENSE_FINE) \div (1823 %c=2.14714

SENSE_COARSE Adjustment flow selection

Two types of flow can be selected for magnetic sensitivity adjustment

Adjustment flow 1: Apply the maximum magnetic field that will be applied during actual use,

and set the sensor output voltage at that time as the target. Adjust it to exceed the voltage.

Adjustment flow 2 \Rightarrow Apply the magnetic field you want to sense accurately during actual use,

and check the magnetic sensitivity at that time. Adjust to exceed the target value.

If the applied magnetic field range and the sensor output at that time are important, select adjustment flow 1.

When there is a magnetic field within the applied magnetic field range that needs to be sensed

with particular accuracy, or when the applied magnetic field range is If not specified, select Adjustment Flow 2.

SENSE_COARSE adjustment flow 1

Variable Name	Variable type	explanation
BFS	Test conditions	Magnetic field range used as sensor
VSIGFS_TAR	Adjustment target va	Sensor output target for BFS
VOUT0_M31	Measurements	VOUT pin voltage in no magnetic field when SENSE_TC=-31 is set
VOUT0_P31	Measurements	VOUT pin voltage in no magnetic field when SENSE_TC=31 is set
VOUTFS_M31	Measurements	VOUT pin voltage for magnetic field BFS when SENSE_TC=-31 is set
VOUTFS_P31	Measurements	VOUT pin voltage for magnetic field BFS when SENSE_TC=31 is set
VSIGFS_M31	Calculated value	Sensor output for BFS when SENSE_TC=-31 is set
VSIGFS_P31	Calculated value	Sensor output for BFS when SENSE_TC=31 is set
SENSE_TC_SET2	Register setting valu	Optimal SENSE_TC_SET setting after adjusting SENSE_CORSE
SENSE_TC_TAR	Adjustment target va	Adjustment target value for magnetic sensitivity temperature drift
C_SENSE_TC	Calculated value	Correction value of SENSE_TC_SET2 according to SENSE_CORSE
SENSE_TC_STEP	Calculated value	Adjustment target value for magnetic sensitivity temperature drift

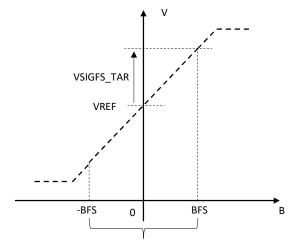
In the following explanation, SENSE_FINE reads/writes to 5Ah and 54h.

SENSE_COARSE is read and written to 51h and 52h.

1 Definition of maximum magnetic flux density (BFS)

Even if a magnetic field larger than the maximum magnetic flux density BMAX that can be applied

to the S-5611A is applied, VOUT cannot change in response to a magnetic field.


Therefore, depending on the specifications of the product (such as a current sensor) that incorporates the S-5611,

Determine the range of magnetic flux densities over which VOUT must change.

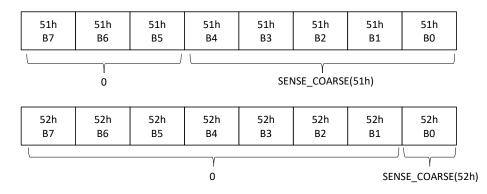
And the maximum magnetic flux density in that range is called BFS.

2 Definition of target maximum output voltage VSIGFS_TAR

The target for adjusting the magnetic sensitivity is the maximum magnetic flux density (BFS) applied. Define the target maximum output voltage VSIGFS_TAR

Applied magnetic field range

3 Set SENSE_FINE to maximum sensitivity


• Write SENSE_FINE=0. Please send data according to the diagram below, except for SENSE_FINE.

54h B7	54h B6	54h B5	54h B4	54h B3	54h B2	54h B1	54h B0
	SENSE_FINE lower bit						
5Ah	5Ah	5Ah	5Ah	5Ah	5Ah	5Ah	5Ah
B7	B6	B5	B4	B3	B2	B1	BO
۲ FBW_SEL				()	SENSE_FIN	E upper bit

*In this flow, the FBW_SEL determined in step 1 is written to FBW_SEL.

*Please repeat steps 4 to 9 below for i=0 to 6.

4 Write SENSE_COARSE=RG7-i

5 Write SENSE_TC=-31

After that, measure VOUT without applying a magnetic field, and let the measurement result be VOUT0_M31.

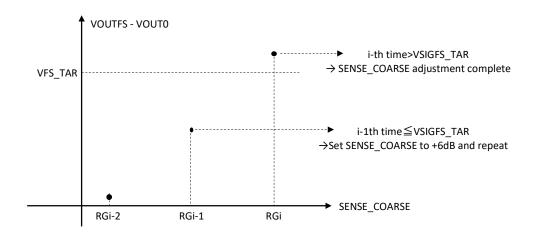
55h	55h	55h	55h	55h	55h	55h	55h
B7	B6	B5	B4	B3	B2	B1	B0
ل) 0	SENSE_TC SE						SENSE_REV

*In this flow, write the SENSE_REV determined in step 1 to SENSE_REV. *For the following "6", "7", "8", and "11", write in the same way, changing only the SENSE_TC.

6 Write SENSE_TC=31

After that, measure VOUT without applying a magnetic field, and set the measurement result as VOUT0_P31.

7 Write SENSE_TC=-31


Then, measure VOUT with BFS applied, and set the measurement result as VOUTFS_M31.

8 Write SENSE_TC=31

Then, measure VOUT with BFS applied, and set the measurement result as VOUTFS_P31.

9 VSIGFS_M31=VOUTFS_M31-VOUT0_M31 VSIGFS_P31=VOUTFS_P31-VOUT0_M31

If VSIGFS_P31>VSIGFS_TAR and VSIGFS_M31>VSIGFS_TAR, end the loop and proceed to "10" below. If the above termination condition is not met and i<6, recalculate i=i+1 and return to "4". If the above termination condition is not met and i=6, the VFS cannot be adjusted.

10 Calculate SENSE_TC_SET2=(SENSE_TC_TAR+CSENSE_TC) ÷ SENSE_TC_STEP * SENSE_TC_TAR is the value defined in "1. Setting the function switching register"

 $*SENSE_TC_SET2$ is rounded off to an integer.

*Select C_SENSE_TC from the table below to correct the change in sensitivity temperature characteristic due to SENSE_COARSE.

Setting SENSE_COARSE	C_SENSE_TC
RG1 to RG5	0
RG6	-257
RG7	-342

11 Write SENSE_TC=SENSE_TC_SET2

SENSE_COARSE adjustment flow 2

Variable Name	Variable type	explanation
BNOM	Test conditions	Magnetic field that needs to be sensed accurately
S_TAR	Adjustment target va	Magnetic sensitivity target for BNOM
VOUT0_M31	Measurements	VOUT pin voltage in no magnetic field when SENSE_TC=-31 is set
VOUT0_P31	Measurements	VOUT pin voltage in no magnetic field when SENSE_TC=31 is set
VOUTFS_M31	Measurements	VOUT pin voltage for magnetic field BFS when SENSE_TC=-31 is set
VOUTFS_P31	Measurements	VOUT pin voltage for magnetic field BFS when SENSE_TC=31 is set
S_M31	Calculated value	Magnetic sensitivity to BNOM when SENSE_TC=-31 is set
S_P31	Calculated value	Magnetic sensitivity for BNOM when SENSE_TC=31 is set
SENSE_TC_SET2	Register setting valu	Optimal SENSE_TC_SET setting after adjusting SENSE_CORSE
SENSE_TC_TAR	Adjustment target va	Adjustment target value for magnetic sensitivity temperature drift
C_SENSE_TC	Calculated value	Correction value of SENSE_TC_SET2 according to SENSE_CORSE
SENSE_TC_STEP	Calculated value	Adjustment target value for magnetic sensitivity temperature drift

In the following explanation, SENSE_FINE reads/writes to 5Ah and 54h. SENSE_COARSE is read and written to 51h and 52h.

1 Determine the target magnetic sensitivity.

Define the target magnetic sensitivity as $S_{TAR} [V/T]$.

2 Determine the magnetic field for adjustment.

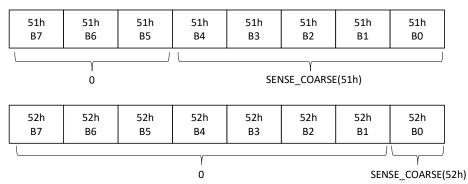
The magnetic field for which we want to adjust the sensitivity most precisely is defined as BNOM[T].

3 Write SENSE_FINE=0

• Write SENSE_FINE=0. Please send data according to the diagram below, except for SENSE_FINE.

54h 54h 54h 54h 54h B7 B6 B5 B4 B3 B2	54h 54h B1 B0
---	------------------

SENSE_FINE lower bit


5Ah B7	5Ah B6	5Ah B5	5Ah B4	5Ah B3	5Ah B2	5Ah B1	5Ah B0
)	(]	Ĺ	
FBW_SEL			()		SENSE_FIN	E upper bit

*In this flow, the FBW_SEL determined in step 1 is written to FBW_SEL.

*Please repeat steps 4 to 9 below for i=0 to 6.

S-5611A Trimming adjustment method via serial interface communication

4 Write SENSE_COARSE=RG7-i

5 Write SENSE_TC=-31

After that, measure VOUT without applying a magnetic field, and let the measurement result be VOUT0_M31.

55h B7	55h B6	55h B5	55h B4	55h B3	55h B2	55h B1	55h B0
Ŷ		Y Y					
0	SENSE_TC SENSE_REV						

*In this flow, write the SENSE_REV determined in step 1 to SENSE_REV.

*For the following "6", "7", "8", and "11", write in the same way, changing only the SENSE_TC.

6 Write SENSE_TC=31

After that, measure VOUT without applying a magnetic field, and set the measurement result as VOUT0_P31.

7 Write SENSE_TC=-31

Then, measure VOUT with BNOM applied, and set the measurement result as VOUTNOM_M31.

8 Write SENSE_TC=31

After that, measure VOUT with BNOM applied, and set the measurement result as VOUTNOM_P31.

9 The magnetic sensitivity is calculated from the measurement results.

S_P31=(VOUTNOM_P31-VOUT0_P31) ÷ BNOM

S_M31=(VOUTNOM_M31-VOUT0_M31) ÷ BNOM

If S_P31>S_TAR and S_M31>S_TAR, end the loop and proceed to "10" below. If the above termination condition is not met and i<6, recalculate i=i+1 and return to "4". If the above termination condition is not met and i=6, then S_TAR cannot be adjusted.

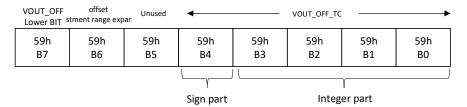
10 Select C_SENSE_TC from the table below to compensate for the change in sensitivity temperature characteristic due to SENSE_COARSE. Calculate SENSE_TC_SET2=(SENSE_TC_TAR+CSENSE_TC) ÷ SENSE_TC_STEP * SENSE_TC_TAR is the value defined in "1. Setting the function switching register" *SENSE_TC_SET2 is rounded off to an integer.

Setting SENSE_COARSE	C_SENSE_TC
RG1 to RG5	0
RG6	-257
RG7	-342

■ Output offset voltage temperature adjustment

How to use the VOUT_OFF_TC register

The output offset voltage temperature drift TCVOFF can be adjusted using the VOUT_OFF_TC register.


VOUT_OFF_TC is set to the optimum value at the factory.

TCVOFF changes depending on the values of the SENSE_COARSE and SENSE_REV registers.

After determining the values of the above two registers, you need to recalculate the optimal values.

The VOUT_OFF_TC register is a total of 5 bits, B4 to B0, at address 19h (59h).

• VOUT_OFF_TC format is a signed integer (-15 to 15). Integer part: B3 to B0 Sign part: B4 (1=positive 0=negative)

VOUT_OFF_TC optimum value setting flow

<Explanation of variables in the flow>

Variable Name	Variable type	explanation
VOUT_OFF_TC_ADJ1	Shipment record value	Optimal code for RG1 (Use when output signal polarity is positive)
VOUT_OFF_TC_ADJ1R	Shipment record value	Optimal code for RG1 (used when output signal polarity is reversed)
VOUT_OFF_TC_ADJ2	Shipment record value	Values for calculating the optimum code for RG2 (used when output signal polarity is positive)
VOUT_OFF_TC_ADJ2R	Shipment record value	Values for calculating the optimum code for RG2 (used when output signal polarity is reversed)
VOUT_OFF_TC_ADJ3	Shipment record value	Values for calculating the optimum code for RG3 to RG7 (used when output signal polarity is positive)
VOUT_OFF_TC_ADJ3R	Shipment record value	Values for calculating the optimum code for RG3 to RG7 (used when output signal polarity is reversed)

1 Read VOUT_OFF_TC_ADJ1 (or VOUT_OFF_TC_ADJ1R)

• It is stored as a signed integer (-15 to 15) in B4 to B0 of address 09h (0Ch).

Integer part: B3 to B0 Sign part: B4 (1 = positive, 0 = negative)

- If SENSE_REV=0 (positive), read VOUT_OFF_TC_ADJ1 (address 09h).
- If SENSE_REV=1 (reverse polarity), read VOUT_OFF_TC_ADJ1R (address 0Ch).

	MSB			LSB			
09h (0Ch) B4	09h (0Ch) B3	09h (0Ch) B2	09h (0Ch) B1	09h (0Ch) B0			
			γ]			
Sign part	Sign part Integer part						

2 Read VOUT_OFF_TC_ADJ2 (or VOUT_OFF_TC_ADJ2R)

- It is stored as a signed integer (-127 to 127) in B7 to B0 of address 0Ah (0Dh). Integer part: B6 to B0 Sign part: B7 (1=positive, 0=negative)
- If SENSE_REV=0 (positive polarity), read VOUT_OFF_TC_ADJ2 (address 0Ah).
- If SENSE_REV=1 (reverse polarity), read VOUT_OFF_TC_ADJ2R (address 0Dh).

	MSB						LSB
0Ah (0Dh) B7	0Ah (0Dh) B6	0Ah (0Dh) B5	0Ah (0Dh) B4	0Ah (0Dh) B3	0Ah (0Dh) B2	0Ah (0Dh) B1	0Ah (0Dh) B0
Sign part				γ Integer par]

3 Read VOUT_OFF_TC_ADJ3 (or VOUT_OFF_TC_ADJ3R)

 \cdot It is recorded as a signed integer (-127 to 127) in B7 to B0 of address 0Bh (0Eh).

Integer part: B6 to B0 Sign part: B7 (1=positive 0=negative)

• If SENSE_REV=0 (positive polarity), read VOUT_OFF_TC_ADJ3 (address 0Bh).

• If SENSE_REV=1 (reverse polarity), read VOUT_OFF_TC_ADJ3R (address 0Eh).

	MSB						LSB
OBh (OEh) B7	OBh (OEh) B6	OBh (OEh) B5	OBh (OEh) B4	OBh (OEh) B3	OBh (OEh) B2	OBh (OEh) B1	OBh (OEh) BO
Sign part	[γ Integer part	:		J

4 Calculate the optimum value of VOUT_OFF_TC

The calculation formula for the value to be set in the VOUT_OFF_TC register changes depending on the setting of SENSE_COARSE.

Also, the variables used in the calculation formula change depending on the SENSE_REV setting. When SENSE_REV=0

Setting SENSE_COARSE	VOUT_OFF_TC calculation formula
RG1	VOUT_OFF_TC_ADJ1
RG2	VOUT_OFF_TC_ADJ2 ÷ 8
RG3~RG7	(VOUT_OFF_TC_ADJ2 - C_ADJ3 × VOUT_OFF_TC_ADJ3) ÷ 8

When SENSE_REV=1

Setting SENSE_COARSE	VOUT_OFF_TC calculation formula
RG1	VOUT_OFF_TC_ADJ1R
RG2	VOUT_OFF_TC_ADJ2R ÷ 8
RG3~RG7	(VOUT_OFF_TC_ADJ2R - C_ADJ3 × VOUT_OFF_TC_ADJ3R) ÷ 8

VOUT_OFF_TC_ADJ1: An integer between -15 and 15

VOUT_OFF_TC_ADJ2: Integer between -127 and 127

VOUT_OFF_TC_ADJ3: Integer between -127 and 127

VOUT_OFF_TC_ADJ1R: An integer between -15 and 15

VOUT_OFF_TC_ADJ2R: Integer between -127 and 127

VOUT_OFF_TC_ADJ3R: Integer between -127 and 127

C_ADJ3: Real number between 1 and 1.938

*For coefficient C_ADJ3, substitute the value in the table below for each SENSE_COARSE setting.

Setting SENSE_COARSE	Coefficient C_ADJ3
RG3	1
RG4	1.5
RG5	1.75
RG6	1.875
RG7	1.938

*The calculation result of VOUT_OFF_TC should be rounded off to an integer.

5 Set VOUT_OFF_TC to the optimum value

- Read address 5Ah to get the contents of B7 to B5.

Write the VOUT_OFF_TC calculated in "4". Please send the data according to the diagram below.

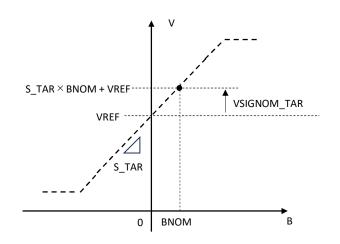
| 59h |
|-----|-----|-----|-----|-----|-----|-----|-----|
| B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 |
| | γ |] | | | γ | |] |

Write the previously read value

VOUT_OFF_TC

■ Magnetic sensitivity fine adjustment

· How to use the SENSE_FINE register


Please refer to the contents described in Step 4 Coarse magnetic sensitivity adjustment.

Define VSIGNOM_TAR and BNOM

In the S-5611, the sensitivity is fine-tuned by applying a magnetic field BNOM for sensitivity adjustment. BNOM is calculated from the target magnetic sensitivity S_TAR and standard output VSIGNOM_TAR.

VSIGNOM_TAR=0.8 BNOM = VSIGNOM_TAR ÷ S_TAR

*Please define S_TAR within the scope of the product specifications.

Select SENSE_FINE adjustment flow

Two types of flow can be selected for magnetic sensitivity adjustment

- Adjustment flow $1 \Rightarrow$ The magnetic sensitivity adjustment will be completed in 1 to 2 times. The optimum value is calculated using a formula based on the initial measurements.
- Adjustment flow 2 \Rightarrow The magnetic sensitivity needs to be adjusted 10 times. The contents of the register are determined bit by bit, gradually approaching the optimal value.

Adjustment flow 1 is the standard flow.

Adjustment flow 2 requires more measurements, but because the register is determined one bit at a time while measuring, it allows for more precise adjustment.

SENSE_FINE adjustment flow 1

Variable Name	Variable type	explanation
VSIGNOM_TAR	Adjustment target value	Sensor output voltage (0.8V) adjustment target value when BNOM is applied
S_TAR	Adjustment target value	Magnetic sensitivity adjustment target value
BNOM	Test conditions	Magnetic field where the sensor output is 0.8V when S_TAR
VOUT0	Measurements	VOUT pin voltage in no magnetic field
VOUTNOM	Measurements	VOUT pin voltage when BNOM is applied
VSIGNOM	Calculated value	Sensor output for BNOM
SENSE_FINE_TRM	Register setting value	Optimal setting for SENSE_FINE (first adjustment)
VOUT02	Measurements	VOUT pin voltage in no magnetic field (after magnetic sensitivity adjustment)
VOUTNOM2	Measurements	VOUT pin voltage when BNOM is applied (after magnetic sensitivity adjustment)
VSIGNOM2	Calculated value	Sensor output for BNOM (after magnetic sensitivity adjustment)
SENSE_FINE_TRM2	Register setting value	Optimal setting for SENSE_FINE (2nd adjustment)
VOUT03	Measurements	VOUT pin voltage in no magnetic field (after magnetic sensitivity adjustment)
VOUTNOM3	Measurements	VOUT pin voltage when BNOM is applied (after magnetic sensitivity readjustment)
VSIGNOM3	Calculated value	Sensor output for BNOM (after magnetic sensitivity readjustment)

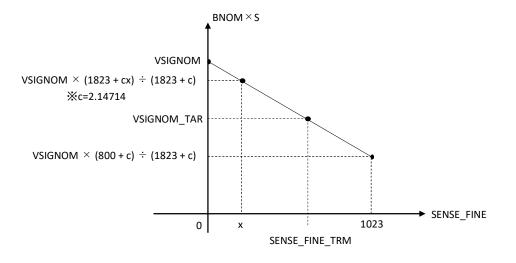
*In the following explanation, SENSE_FINE reads/writes to 5Ah and 54h.

1 Write SENSE_FINE=0

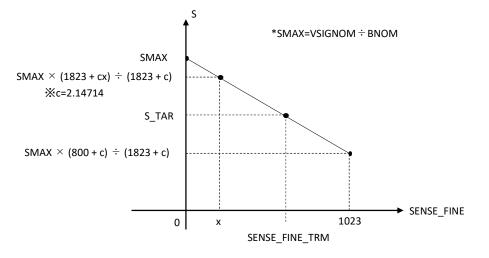
• Write SENSE_FINE=0. Please send data according to the diagram below, except for SENSE_FINE.

5Ah B7	5Ah B6	5Ah B5	5Ah B4	5Ah B3	5Ah B2	5Ah B1	5Ah BO
					J	Ĺ	,]
I FBW_SEL			()		SENSE_FIN	i E upper bit

*In this flow, the FBW_SEL determined in step 1 is written to FBW_SEL.


*In this flow, when writing SENSE_FINE, please change only the contents of SENSE_FINE and write as shown in the figure above.

2 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT0.


3 With BNOM applied, measure VOUT and let VOUTNOM be it.

4 VSIGNOM=VOUTNOM-VOUT0

5 Write SENSE_FINE=SENSE_FINE_TRM

*The adjustment of magnetic sensitivity S corresponds to the above figure as shown below.

6 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT02.

7 Measure VOUT with BNOM applied and call it VOUTNOM2.

8 VSIGNOM2=VOUTNOM2-VOUT02

Determine whether the following conditions are met. -SSTEP ÷2< (VSIGNOM2-VSIGNOM_TAR) ÷ VSIGNOM_TAR < SSTEP ÷2

*SSTEP is determined as the Max (0.30%) of "Formula B" among the values listed in "1.2 Magnetic Properties" of the data sheet.

If it is met, proceed to the next adjustment flow. If not, perform an additional trim in the following steps.

9 Calculate SENSE_FINE_TRM2

```
= (1823 + c) \times (1 - VSIGNOM_TAR \div VSIGNOM2) + SENSE_FINE_TRM \times VSIGNOM_TAR \div VSIGNOM2 
*SENSE_FINE_TRM2 is rounded off to the nearest integer.
```

```
10 Write SENSE_FINE=SENSE_FINE_TRM2
```

11 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT03.

- 12 Measure VOUT with BNOM applied and call it VOUTNOM3.
- 13 VSIGNOM3=VOUTNOM3-VOUT03

Check that the final magnetic sensitivity S=VSIGNOM3 \div BNOM meets the required accuracy.

SENSE_FINE adjustment flow 2

Variable Name	Variable type	explanation
VSIGNOM_TAR	Adjustment target value	Sensor output voltage (0.8V) adjustment target value when BNOM is applied
S_TAR	Adjustment target value	Magnetic sensitivity adjustment target value
BNOM	Test conditions	Magnetic field where the sensor output is 0.8V when S_TAR
VOUT0	Measurements	VOUT pin voltage in no magnetic field
VOUTNOM	Measurements	VOUT pin voltage when BNOM is applied
VSIGNOM	Calculated value	Sensor output for BNOM
SENSE_FINE_TRM	Register setting value	Optimal setting for SENSE_FINE (first adjustment)
VOUT02	Measurements	VOUT pin voltage in no magnetic field (after magnetic sensitivity adjustment)
VOUTNOM2	Measurements	VOUT pin voltage when BNOM is applied (after magnetic sensitivity adjustment)
VSIGNOM2	Calculated value	Sensor output for BNOM (after magnetic sensitivity adjustment)

*In the following explanation, SENSE_FINE reads/writes to 5Ah and 54h.

1 Set SENSE_FINE_TRM=0

Let i=0

*Please repeat steps 2 to 5 below for i=0 to 9.

2 Write SENSE_FINE=SENSE_FINE_TRM+2^(9-i)

• For all data types other than SENSE_FINE, please send data according to the diagram below.

54h B7	54h B6	54h B5	54h B4	54h B3	54h B2	54h B1	54h B0
ιι							
SENSE_FINE lower bit							
5Ah	5Ah	5Ah	5Ah	5Ah	5Ah	5Ah	5Ah
B7	B6	B5	B4	B3	B2	B1	BO
I I FBW_SEL O			, ,		SENSE_FIN		

*In this flow, the FBW_SEL determined in step 1 is written to FBW_SEL.

3 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT0.

4 With BNOM applied, measure VOUT and let VOUTNOM be it.

VSIGNOM=VOUTNOM-VOUT0 (i) If VSIGNOM ≥ VSIGNOM_TAR Recalculate SENSE_FINE_TRM=SENSE_FINE_TRM+2^(9-i)

(ii) VSIGNOM In this case, SENSE_FINE_TRM is not recalculated.

- 5 If i<9, recalculate i=i+1 and return to "2" above. If i=9, end the loop and proceed to "6" below
- 6 Write SENSE_FINE=SENSE_FINE_TRM
- 7 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT02.
- 8 Measure VOUT with BNOM applied and call it VOUTNOM2.
- 9 VSIGNOM2=VOUTNOM2-VOUT02

Check that the final magnetic sensitivity S=VSIGNOM2 \div BNOM meets the required accuracy.

■Magnetic sensitivity temperature drift adjustment

· When magnetic sensitivity temperature drift adjustment is required

The magnetic sensitivity temperature drift is adjusted using the SENSE_TC register in "Step 2.

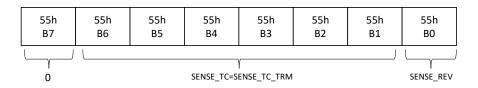
Adjustment of magnetic sensitivity temperature drift (without measurement)".

The magnetic sensitivity temperature drift when using this method varies within the range

of "Magnetic Sensitivity Temperature Drift" described in "1.2 Magnetic Characteristics" on the datasheet.

If you want to adjust the temperature drift more precisely, you can measure the actual temperature drift and then adjust it.

SENSE_TC adjustment flow


Variable Name	Variable type	explanation
BNOM	Test conditions	Step 6. Magnetic field of the magnitude determined by fine-tuning the magnetic sensitivity
VOUT0_P25C	Measurements	VOUT pin voltage in no magnetic field (at 25°C)
VOUT_NOM_P25C	Measurements	VOUT pin voltage when BNOM is applied (at 25°C)
VSIGNOM_P25C	Calculated value	Sensor output for BNOM (at 25°C)
TLT	Test conditions	The lowest temperature in the desired temperature range
VOUT0_LT	Measurements	VOUT pin voltage in no magnetic field (LT)
VOUTNOM_LT	Measurements	VOUT pin voltage when BNOM is applied (LT)
VSIGNOM_LT	Calculated value	Sensor output for BNOM (LT)
ТНТ	Test conditions	The highest temperature in the desired temperature range
VOUT0_HT	Measurements	VOUT pin voltage in no magnetic field (HT)
VOUTNOM_HT	Measurements	VOUT pin voltage when BNOM is applied (HT)
VSIGNOM_HT	Calculated value	Sensor output for BNOM (HT)
SENSE_TC_INI	Calculated value	Magnetic sensitivity temperature drift before adjustment
SENSE_TC_TAR	Adjustment target value	Step 2. Adjustment of magnetic sensitivity temperature drift (without measurement) Same value
SENSE_TC_STEP	Shipment record value	Step 2. Adjustment of magnetic sensitivity temperature drift (without measurement) Same value
SENSE_TC_SET2	Calculated value	Step 4. Same value as magnetic sensitivity coarse adjustment
SENSE_TC_TRM	Register setting value	Optimal setting for SENSE_TC

1 The ambient temperature (Ta) of the S-5611A is set to 25 $^\circ\,$ C.

- 2 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT0_P25C.
- 3 Measure VOUT with BNOM applied, and set the measurement result as VOUTNOM_P25C.
- 4 VSIGNOM_P25C=VOUTNOM_P25C-VOUT0_P25C
- 5 Set the ambient temperature (Ta) of the S-5611A to the lowest temperature TLT [°C] in the desired temperature range.
- 6 Measure VOUT without applying a magnetic field, and let the measurement result be VOUTNOM_LT.
- 7 Measure VOUT with BNOM applied, and let the measurement result be VOUTNOM_LT.
- 8 VSIGNOM_LT=VOUTNOM_LT-VOUT0_LT
- 9 Set the ambient temperature (Ta) of the S-5611A to the highest temperature THT [°C] within the desired temperature range.
- 10 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT0_HT.

- 11 Measure VOUT with BNOM applied, and let the measurement result be VOUTNOM_HT.
- 12 VSIGNOM_HT=VOUTNOM_HT-VOUT0_HT
- 13 SENSE_TC_INI=(VSIGNOM_HT-VSIGNOM_LT) ÷ VSIGNOM_P25C ÷ (THT-TLT) × 1e6 [ppm/°C]
- 14 Calculate SENSE_TC_TRM=(SENSE_TC_TAR-SENSE_TC_INI) ÷ SENSE_TC_STEP+SENSE_TC_SET2. *SENSE_TC_TRM is rounded off to an integer.

Write SENSE_TC=SENSE_TC_TRM

*In this flow, write the SENSE_REV determined in step 1 to SENSE_REV.

- 15 Set the ambient temperature (Ta) of the S-5611A to 25° C and perform fine sensitivity adjustment again. Please re-perform part of the contents of "6. Fine-tuning the magnetic sensitivity"
 - If you selected Adjustment Flow 1 in "6. Magnetic Sensitivity Fine Tuning" \rightarrow Please repeat steps 5 to 13 in Adjustment Flow 1
 - If you selected Adjustment Flow 2 in "6. Magnetic Sensitivity Fine Tuning" \rightarrow Please repeat steps 1 to 9 in Adjustment Flow 2

■ Magnetic sensitivity temperature drift adjustment (adjustment step measurement included)

About adjustment step measurement

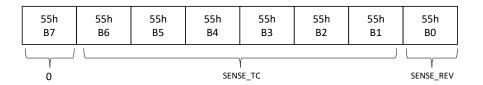
SENSE_TC_STEP, the adjustment step for magnetic sensitivity temperature drift, is In addition to using the value read in "1. Setting the function switching register", You can also use actual measured adjustment steps.

Although this increases the number of measurement steps, it allows for even more precise tuning

of the sensitivity-temperature characteristics.

SENSE_TC adjustment flow

Variable Name	Variable type	explanation			
BNOM	Test conditions	Step 6. Magnetic field of the magnitude determined by fine-tuning the magnetic sensitivity			
VOUT0_P25C	Measurements	VOUT pin voltage in no magnetic field (at 25°C)			
VOUT_NOM_P25C	Measurements	VOUT pin voltage when BNOM is applied (at 25°C)			
VSIGNOM_P25C	Calculated value	Sensor output for BNOM (at 25°C)			
VOUT0_P25C_P31	Measurements	OUT pin voltage in no magnetic field when SENSE_TC=31 (at 25° C)			
VOUT_NOM_P25C_P31	Measurements	OUT pin voltage when BNOM is applied at SENSE_TC=31 (at 25°C)			
VSIGNOM_P25C_P31	Calculated value	Sensor output for BNOM when SENSE_TC=31 (at 25°C)			
VOUT0_P25C_M31	Measurements	VOUT pin voltage in no magnetic field when SENSE_TC=-31 (at 25°C)			
VOUT_NOM_P25C_M31	Measurements	VOUT pin voltage when BNOM is applied at SENSE_TC=-31 (at 25°C)			
VSIGNOM_P25C_M31	Calculated value	Sensor output for BNOM at SENSE_TC=-31 (at 25°C)			
TLT	Test conditions	The lowest temperature in the desired temperature range			
VOUT0_LT	Measurements	VOUT pin voltage in no magnetic field (LT)			
VOUTNOM_LT	Measurements	VOUT pin voltage when BNOM is applied (LT)			
VSIGNOM_LT	Calculated value	Sensor output for BNOM (LT)			
VOUT0_LT_P31	Measurements	VOUT pin voltage (TLT) with no magnetic field when SENSE_TC=31			
VOUT_NOM_LT_P31	Measurements	VOUT pin voltage when BNOM is applied (TLT) at SENSE_TC=31			
VSIGNOM_LT_P31	Calculated value	Sensor output for BNOM at SENSE_TC=31 (at TLT)			
VOUT0_LT_M31	Measurements	VOUT pin voltage (TLT) with no magnetic field when SENSE_TC=-31			
VOUT_NOM_LT_M31	Measurements	VOUT pin voltage when BNOM is applied (at TLT) at SENSE_TC=-31			
VSIGNOM_LT_M31	Calculated value	Sensor output for BNOM at SENSE_TC=-31 (at TLT)			
ТНТ	Test conditions	The highest temperature in the desired temperature range			
VOUT0_HT	Measurements	VOUT pin voltage in no magnetic field (at THT)			
VOUTNOM_HT	Measurements	VOUT pin voltage when BNOM is applied (at THT)			
VSIGNOM_HT	Calculated value	Sensor output for BNOM (at THT)			
VOUT0_HT_P31	Measurements	VOUT pin voltage (at THT) with no magnetic field when SENSE_TC=31			
VOUT_NOM_HT_P31	Measurements	VOUT pin voltage when BNOM is applied (at THT) at SENSE_TC=31			
VSIGNOM_HT_P31	Calculated value	Sensor output for BNOM at SENSE_TC=31 (at THT)			
VOUT0_HT_M31	Measurements	VOUT pin voltage (at THT) with no magnetic field when SENSE_TC=-31			
VOUT_NOM_HT_M31	Measurements	VOUT pin voltage when BNOM is applied (at THT) at SENSE_TC=-31			
VSIGNOM_HT_M31	Calculated value	Sensor output for BNOM at SENSE_TC=-31 (at THT)			
SENSE_TC_INI	Calculated value	Magnetic sensitivity temperature drift before adjustment			
SENSE TO TAD	Adjustment	Step 2. Adjustment of magnetic sensitivity temperature drift			
SENSE_TC_TAR	target value	(without measurement) Same value			
SENSE_TC_STEP_M	Calculated value	Magnetic sensitivity temperature drift adjustment step calculated from measured value			
SENSE_TC_SET2	Calculated value	Step 4. Same value as magnetic sensitivity coarse adjustment			
021102_10_0212					


1 The ambient temperature (Ta) of the S-5611A is set to 25 $^\circ\,$ C.

2 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT0_P25C.

3 Measure VOUT with BNOM applied, and set the measurement result as VOUTNOM_P25C.

4 VSIGNOM_P25C=VOUTNOM_P25C-VOUT0_P25C

5 Write SENSE_TC=31

*In this flow, write the SENSE_REV determined in step 1 to SENSE_REV.*When writing to the SENSE_TC register thereafter, write in the same way, changing only SENSE_TC.

6 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT0_P25C_P31.

7 Measure VOUT with BNOM applied, and set the measurement result as VOUTNOM_P25C_P31.

8 VSIGNOM_P25C_P31 = VOUTNOM_P25C_P31 - VOUT0_P25C_P31

9 Write SENSE_TC=-31

10 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT0_P25C_M31.

11 Measure VOUT with BNOM applied, and set the measurement result as VOUTNOM_P25C_M31.

12 VSIGNOM_P25C_M31 = VOUTNOM_P25C_M31 - VOUT0_P25C_M31

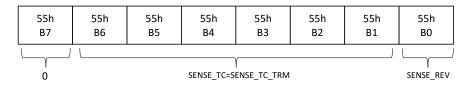
- 13 Write SENSE_TC=SENSE_TC_SET2
- 14 Set the ambient temperature (Ta) of the S-5611A to the lowest temperature TLT [°C] in the desired temperature range.

15 Measure VOUT without applying a magnetic field, and let the measurement result be VOUTNOM_LT.

- 16 Measure VOUT with BNOM applied, and let the measurement result be VOUTNOM_LT.
- 17 VSIGNOM_LT=VOUTNOM_LT-VOUT0_LT
- 18 Write SENSE_TC=31

19 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT0_LT_P31.

20 Measure VOUT with BNOM applied, and set the measurement result as VOUTNOM_LT_P31.


21 VSIGNOM_LT_P31=VOUTNOM_LT_P31-VOUT0_LT_P31

```
22 Write SENSE_TC=-31
```

- 23 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT0_LT_M31.
- 24 Measure VOUT with BNOM applied, and set the measurement result as VOUTNOM_LT_M31.
- 25 VSIGNOM_LT_M31=VOUTNOM_LT_M31-VOUT0_LT_M31
- 26 Write SENSE_TC=SENSE_TC_SET2
- 27 Set the ambient temperature (Ta) of the S-5611A to the highest temperature THT [°C] within the desired temperature range.
- 28 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT0_HT.
- 29 Measure VOUT with BNOM applied, and let the measurement result be VOUTNOM_HT.
- 30 VSIGNOM_HT=VOUTNOM_HT-VOUT0_HT
- 31 Write SENSE_TC=31
- 32 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT0_HT_P31.
- 33 Measure VOUT with BNOM applied, and set the measurement result as VOUTNOM_HT_P31.
- 34 VSIGNOM_HT_P31 = VOUTNOM_HT_P31 VOUT0_HT_P31
- 35 Write SENSE_TC=-31
- 36 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT0_HT_M31.
- 37 Measure VOUT with BNOM applied, and set the measurement result as VOUTNOM_HT_M31.
- 38 VSIGNOM_HT_M31 = VOUTNOM_HT_M31 VOUT0_HT_M31
- 39 Write SENSE_TC=SENSE_TC_SET2
- 40 Calculate SENSE_TC_INI=(VSIGNOM_HT VSIGNOM_LT) ÷ VSIGNOM_P25C ÷ (HLT-TLT) × 1e6 [ppm/°C]
- 41 Calculate SENSE_TC_P31 = (VSIGNOM_HT_P31 - VSIGNOM_LT_P31) ÷ VSIGNOM_P25C_P31 ÷ (THT-TLT) × 1e6 [ppm/°C]
- 42 Calculate SENSE_TC_M31 = (VSIGNOM_HT_M31 - VSIGNOM_LT_M31) ÷ VSIGNOM_P25C_M31 ÷ (THT-TLT) × 1e6 [ppm/°C]
- 43 Calculate SENSE_TC_STEP_M = (SENSE_TC_P31-SENSE_TC_M31) ÷ 62 [ppm/°C]

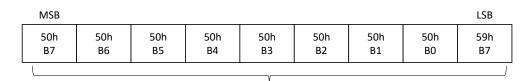
44 Calculate SENSE_TC_TRM=(SENSE_TC_TAR-SENSE_TC_INI) ÷ SENSE_TC_STEP_M+SENSE_TC_SET2 *SENSE_TC_TRM is rounded off to an integer.

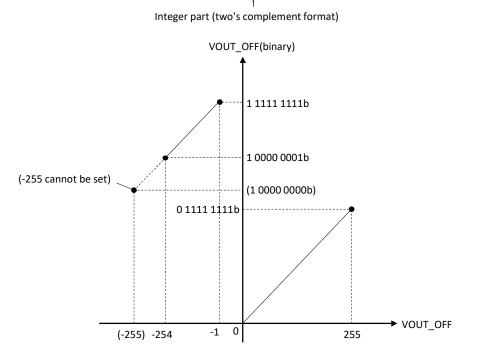
Write SENSE_TC=SENSE_TC_TRM

*In this flow, write the SENSE_REV determined in step 1 to SENSE_REV.

45 Set the ambient temperature (Ta) of the S-5611A to 25° C and perform fine sensitivity adjustment again. Please re-perform part of the contents of "6. Fine-tuning the magnetic sensitivity"

If you selected Adjustment Flow 1 in "6. Magnetic Sensitivity Fine Tuning" $$\rightarrow$$ Please repeat steps 5 to 13 in Adjustment Flow 1


If you selected Adjustment Flow 2 in "6. Magnetic Sensitivity Fine Tuning" \rightarrow Please repeat steps 1 to 9 in Adjustment Flow 2


Offset adjustment

How to use the VOUT_OFF register

The offset voltage VOFF of the VOUT pin voltage is adjusted using the VOUT_OFF register. The VOUT_OFF register is divided into two addresses, B7 to B0 at address 10h (50h) and B7 at address 19h (59h), for a total of 9 bits.

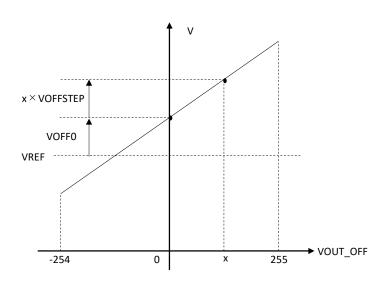
- The calculation is performed with B7 to B0 at address 10h (50h) as the upper bits and B7 at address 19h (59h) as the lower bit.
- VOUT_OFF is a two's complement integer (-255 to 255).
- The values that can be set for VOUT_OFF are -254 to 255. -255 is not possible.

Correspondence between VOUT_OFF and 9-bit binary number

• Even if you want to change only VOUT_OFF, you must send the data of other bits (B6 to B0) in address 19h (59h). If you do not want to rewrite B6 to B0, read them in advance and send the values read.

VOUT_OFF upper bit 59h 59h 59h 59h 59h 59h 59h 59h B6 Β5 Β3 Β1 В0 B7 R4 B2 VOUT OFF offset Unused VOUT_OFF_TC Adjustment range expansion Lower BIT

S-5611A Trimming adjustment method via serial interface communication

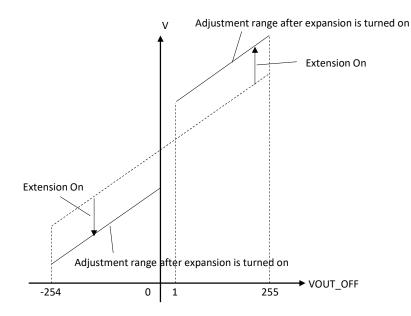

Offset adjustment amount by VOUT_OFF register

Setting the VOUT_OFF register value to +x from the current value will increase VOUT by $x \times VOFFSTEP$, and setting it to -x will decrease VOUT by $x \times VOFFSTEP$. If VOFF when the VOUT_OFF register is 0 is VOFF0, the relationship between VOUT, VOFF and VOUT_OFF is expressed by the following equation.

VOUT=VOFF0+VREF+VOUT_OFF × VOFFSTEP

VOFF=VOFF0+VOUT_OFF × VOFFSTEP

%VOFF=VOUT-VREF



- Expanded offset adjustment range

If you need to widen the offset adjustment range, set B6 of address 19h (59h) to "1". The adjustment range can be expanded.

When the extended on state is entered, VOUT increases by $128 \times VOFFSTEP$ when VOUT_OFF is in the range of 1 to 255.

On the other hand, when VOUT_OFF is in the range of -254 to 0, it decreases by $128 \times VOFFSTEP$.

VOUT_OFF adjustment flow selection

Two types of flow can be selected for offset adjustment

- Adjustment flow 1 ⇒ The offset adjustment will be completed in 1 to 2 times.
 The optimum value is calculated using a formula based on the initial measurements.
- Adjustment flow 2 \Rightarrow The offset needs to be adjusted 8 times.

The contents of the register are determined bit by bit, gradually approaching the optimal value.

Adjustment flow 1 is the standard flow.

Adjustment flow 2 requires more measurements, but since the register is determined one bit at a time while measuring, This allows for more accurate alignment.

• VOUT_OFF adjustment flow 1

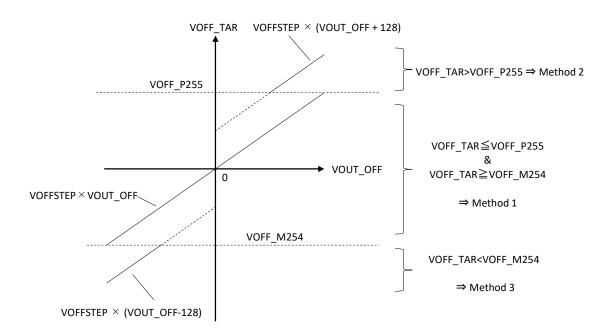
Variable Name	Variable type	explanation
VOFF_TAR	Adjustment target va	Offset adjustment target value
VREF	Measurements	Measured VREF pin voltage
VOUT_P255	Measurements	VOUT pin voltage when VOUT_OFF=255
VOFF_P255	Calculated value	Offset when VOUT_OFF=255
VOUT_M254	Measurements	VOUT pin voltage when VOUT_OFF=-254
VOFF_M254	Calculated value	Offset when VOUT_OFF=-254
VOFFSTEP	Calculated value	Calculated offset adjustment step
VOUT_PM0	Measurements	VOUT pin voltage when VOUT_OFF=0
VOUT_P255E	Measurements	VOUT pin voltage when VOUT_OFF=255
VOUT_M254E	Measurements	Offset when VOUT_OFF=-254
VOFF_TRM	Register setting valu	Optimal VOUT_OFF setting (first adjustment)
VOUT_TRM	Measurements	VOUT pin voltage after VOUT_OFF adjustment
VOFF_TRM2	Register setting valu	Optimal VOUT_OFF setting (2nd adjustment)
VOUT_TRM2	Measurements	VOUT pin voltage after VOUT_OFF adjustment

*If the text specifies that VOUT_OFF should be read/written, this is done for addresses 50h and 59h.

1 Determine the offset target value VOFF_TAR.

Adjusting VOFF The target VOFF_TAR does not necessarily have to be 0mV. In the procedure described in this document, VOFF can be adjusted appropriately regardless of the value of VOFF_TAR.

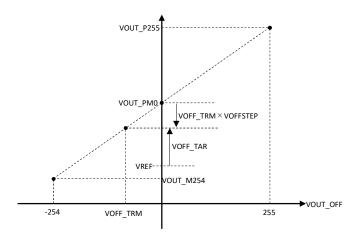
2 Read address 59h


In the future, when writing VOUT_OFF, please send B5 to B0 of the 59h transmission data as the results of reading B5 to B0 here.

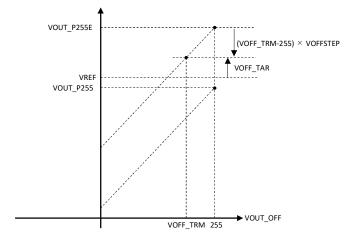
3 Measure VREF without applying a magnetic field, and let the measurement result be VREF.

4 Write VOUT_OFF=255

5 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT_P255. At that time, calculate the offset voltage VOFF_P255=VOUT_P255-VREF. 6 Write VOUT_OFF=-254


- 7 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT_M254. At that time, calculate the offset voltage VOFF_M254=VOUT_M254-VREF.
- 8 Calculate the VOFF adjustment step VOFFSTEP VOFFSTEP=(VOUT_P255-VOUT_M254) ÷ 509
- 9 To set the VOUT_OFF register appropriately, it is necessary to determine whether to expand the adjustment range based on the VOFF_P255 and VOFF_M254 values. Depending on the result, the register setting method is divided into 1 to 3.

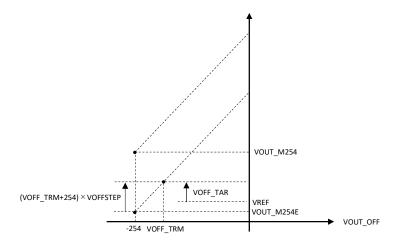
Method 1: When VOUT_P255 \geq VOFF_TAR and VOUT_M254 \leq VOFF_TAR


- 10 Write VOUT_OFF=0
- 11 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT_PM0. VOFF_TRM=-(VOUT_PM0-VREF-VOFF_TAR) ÷ VOFFSTEP *VOFF_TRM is an integer rounded off to the nearest whole number.
- 12 Write VOUT_OFF=VOFF_TRM

13 Perform "Additional trimming (common to methods 1 to 3)" described below.

Method 2 VOFF_P255

- 10 Adjustment range extension on
- 11 Write VOUT_OFF=255
- 12 Measure VOUT without applying a magnetic field, and the measurement result is VOUT_P255E.
- 13 VOFF_TRM=255-(VOUT_P255E-VREF-VOFF_TAR) ÷ VOFFSTEP *VOFF_TRM is an integer rounded off to the nearest whole number.
- 14 Write VOUT_OFF=VOFF_TRM
- 15 Perform "Additional trimming (common to methods 1 to 3)" described below.


Method 3: If VOFF_M254>VOFF_TAR

- 10 Adjustment range extension on
- 11 Write VOUT_OFF=-254
- 12 Measure VOUT without applying a magnetic field, and the measurement result is VOUT_M254E.

13 VOFF_TRM=-254-(VOUT_M254E-VREF-VOFF_TAR) ÷ VOFFSTEP *VOFF_TRM is an integer rounded off to the nearest whole number.

14 Write VOUT_OFF=VOFF_TRM

15 Perform "Additional trimming (common to methods 1 to 3)" described below.

Additional trimming (common to methods 1 to 3)

Add 1	VOUT measurement, VOUT_TRM
Add 2	Determine whether the following conditions are met. -VOFFSTEP ÷ 2 < (VOUT_TRM-VREF-VOFF_TAR) < VOFFSTEP ÷ 2
Add 3	If it is satisfied, proceed to writing the trimming result to the non-volatile address. If not, perform an additional trim in the following steps.
Add 4	VOFF_TRM2=VOFF_TRM-(VOUT_TRM-VREF-VOFF_TAR) ÷ VOFFSTEP *VOFF_TRM2_TRM2 is an integer rounded off to the nearest whole number.
Add 5	Write VOUT_OFF=VOFF_TRM2
Add 6	VOUT measurement, VOUT_TRM2 Check that the error from the final target, VOUT_TRM2-VREF-VOFF_TAR, meets the required accuracy.

• VOUT_OFF adjustment flow 2

Variable Name	Variable type	explanation
VOFF_TAR	Adjustment target va	Offset adjustment target value
VREF	Measurements	Measured VREF pin voltage
VOUT0	Measurements	VOUT pin voltage when VOUT_OFF=0
VOFF0	Calculated value	Offset when VOUT_OFF=0
VOUT_P255	Measurements	VOUT pin voltage when VOUT_OFF=255
VOFF_P255	Calculated value	Offset when VOUT_OFF=255
VOUT_M254	Measurements	VOUT pin voltage when VOUT_OFF=-254
VOFF_M254	Calculated value	Offset when VOUT_OFF=-254
VOUTX	Measurements	Adjustment process offset
VOFF_TRM	Register setting valu	Optimal VOUT_OFF setting
VOUT_TRM	Measurements	VOUT pin voltage after VOUT_OFF adjustment

*If the text specifies that VOUT_OFF should be read/written, this is done for addresses 50h and 59h.

- Determine the offset target value VOFF_TAR.
 Adjusting VOFF The target VOFF_TAR does not necessarily have to be 0mV.
 In the procedure described in this document, VOFF can be adjusted appropriately regardless of the value of VOFF_TAR.
- 2 Read address 59h

In the future, when writing VOUT_OFF, please send B5 to B0 of the 59h transmission data as the results of reading B5 to B0 here.

- 3 Measure VREF without applying a magnetic field, and let the measurement result be VREF.
- 4 Write VOUT_OFF=0
- 5 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT0. At that time, calculate the offset voltage VOFF0=VOUT0-VREF.
- 4 Write VOUT_OFF=255
- 5 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT_P255. At that time, calculate the offset voltage VOFF_P255=VOUT_P255-VREF.
- 6 Write VOUT_OFF=-254
- 7 Measure VOUT without applying a magnetic field, and set the measurement result as VOUT_M254. At that time, calculate the offset voltage VOFF_M254=VOUT_M254-VREF.

8 To set the VOUT_OFF register appropriately, it is necessary to determine whether to expand the adjustment range based on the VOFF_P255 and VOFF_M254 values. Depending on the result, decide whether to extend the adjustment range or not.

(i) When VOUT_P255 \geq VOFF_TAR and VOUT_M254 \leq VOFF_TAR In this case, the adjustment range extension is not turned on.

(ii) In any other caseTurns on extended adjustment range.

9 The next step branches depending on which of VOFF0 and VOFF_TAR is larger.

(i) If VOFF0≦VOFF_TAR

Set VOFF_TRM=0 Let i=0

*Please repeat steps 10 to 12 below for i=0 to 7.

10 Write VOUT_OFF=VOFF_TRM+(2^(7-i))

11 Measure VOUT without applying a magnetic field, and let the measurement result be VOUTX.

(i) When VOUTX-VREF \leq VOFF_TAR Recalculate VOFF_TRM=VOFF_TRM+(2^(7-i))

(ii) When VOUTX-VREF>VOFF_TAR In this case, VOFF_TRM is not recalculated.

12 If i<7, recalculate i=i+1 and return to "10" above. If i=7, end the loop and proceed to "13" below

13 Write VOUT_OFF=VOFF_TRM

14 Measure VOUT without applying a magnetic field, and let the measurement result be VOUT_TRM. Check that the error VOUT_TRM-VREF-VOFF_TAR from the final target meets the required accuracy.

(ii) If VOFF0 > VOFF_TAR

Set VOFF_TRM=0 Let i=0

 $\$ Please repeat steps 10 to 12 below 8 times for i=0 to 7.

10 Write VOUT_OFF=VOFF_TRM-(2^(7-i))

11 Measure VOUT without applying a magnetic field, and let the measurement result be VOUTX.

(i) When VOUTX-VREF \geq VOFF_TAR Recalculate VOFF_TRM=VOFF_TRM-(2^(7-i))

(ii) VOUTX - VREF In this case, VOFF_TRM is not recalculated.

12 If i<7, recalculate i=i+1 and return to "10" above. If i=7, end the loop and proceed to "13" below

13 Write VOUT_OFF=VOFF_TRM

14 Measure VOUT without applying a magnetic field, and let the measurement result be VOUT_TRM. Check that the error VOUT_TRM-VREF-VOFF_TAR from the final target meets the required accuracy.

Writing trimming results to non-volatile addresses

The final trimming adjustment code is written to a non-volatile area. Please write from 10h to 1Ah as shown in the table below.

For multi-byte write, 11 bytes from 10h to 1Ah are sent.

*When writing a single byte, there is no need to send data to the unused register 18h.

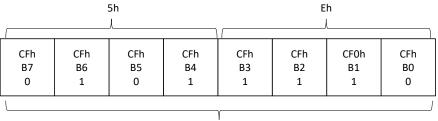
Address and transmission data to be written after trimming

	B7	B6	B5	B4	B3	B2	B1	B0	
10h	VOUT_OFF[8:1]								
11h	0 SENSE_COARSE(51h)								
12h	0						SENSE_COA RSE(52h)		
13h	0 TSD_EN							TSD_EN	
14h	SENSE_FINE[7:0]								
15h	0	0 SENSE_TC SENSE_F						SENSE_REV	
16h	0 VREF_SEL VREF_EXT 0 VREF					_SEL			
17h	0 VREF								
18h	0								
19h	VOUT_OFF [0]	Adjustment Range Expansion	0	VOUT_OFF_TC					
1Ah	FBW	_SEL	0 SENSE_FINE[9:8]						

Write protection

By enabling the write protect function, you can prevent the contents of the non-volatile memory from being rewritten.

Once the write protect function is enabled, it cannot be disabled again.


Therefore, please do as necessary.

Write protection activation flow

1 Write the keyword for write-protect mode to the keyword register.

The data (keyword) to be sent is 5Eh

Data to send to the keyword register (CFh)

keyword

2 By writing the write protect mode keyword,

It becomes possible to write to the write protect register (1Fh B0).

Write "1" to the write protect register.

Write protect function enable/disable	Write Protect Register		
invalid	0		
valid	1		

1Fh B7	1Fh B6	1Fh B5	1Fh B4	1Fh B3	1Fh B2	1Fh B1	1Fh BO
[γ]	
	0					Write Protec Register	

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein.
- 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein.
- 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges.
- 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products.
- 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.

The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility.

- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc.
- 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative.
- 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.

2.4-2019.07