

S-5611A

www.ablic.com

PROGRAMMABLE, FAST-RESPONSE, LINEAR HALL EFFECT SENSOR IC

© ABLIC Inc., 2024

Rev.1.0 01

This IC, developed by CMOS technology, is a programmable fast-response linear Hall effect sensor IC. It provides an analog output voltage proportional to the magnetic flux density based on the VREF pin voltage.

The IC has a built-in non-volatile memory and a 2-wire serial interface that allow flexible switching functions and trimming adjustments. Switching functions are available for the reference voltage operation mode, reference voltage output, output voltage polarity, frequency bandwidth, and thermal shutdown. High-precision trimming adjustments are available for sensitivity, sensitivity thermal drift, output offset voltage, and reference voltage output.

Because of its fast response, it is ideal for current sensor applications such as monitoring instantaneous overcurrent.

adjustment

Features

- Output response time:
- Analog voltage output proportional to magnetic flux density:

2.5 µs max. (frequency bandwidth 400 kHz)

Detection temperature 170°C typ.

0.50 V, 1.50 V, 1.65 V, 2.50 V*1

100 kHz, 200 kHz, 400 kHz*1

Available*1, unavailable

1.5 mV step max.

4.0 mV step max.

 V_{DD} = 4.5 V to 5.5 V I_{DD} = 19 mA typ.

Ta = -40°C to +125°C

Normal polarity*1, opposite polarity

6 V/T to 180 V/T (130 V/T typ.*1), 0.3% step max.

Operates with VREF pin voltage reference, non-linearity $\pm 0.5\%$ max. High resistance to power supply noise due to non-ratiometric operation 2-wire serial interface enables switching of IC functions and trimming

Reference voltage output mode*1, reference voltage input mode

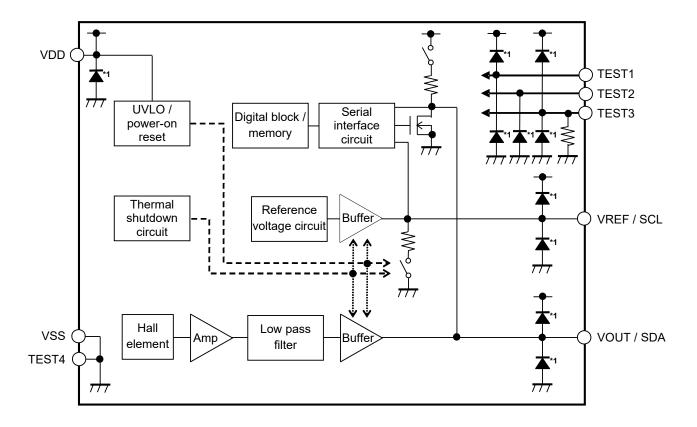
-500 ppm/°C to +500 ppm/°C (0 ppm/°C typ.*1), 25 ppm/°C step typ.

• Built-in non-volatile memory:

- Built-in thermal shutdown circuit:
- Switching functions
 Reference voltage operation mode:
 Reference voltage output:
 Output voltage polarity:
 Frequency bandwidth:
- Thermal shutdown: • Trimming adjustment Sensitivity: Sensitivity thermal drift: Output offset voltage: Reference voltage output:
- Power supply voltage range:
- Current consumption:
- Operation temperature range:
- Lead-free (Sn 100%), halogen-free

***1.** Initial settings at shipment

Application

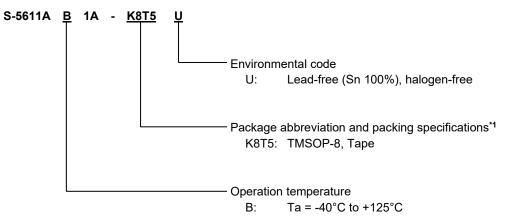

- Magnetic core current sensor
- Linear position detection
- Rotation detection

Package

• TMSOP-8

ABLIC Inc.

Block Diagram



*1. Parasitic diode

Figure 1

Product Name Structure

1. Product name

*1. Refer to the tape drawing.

2. Package

Table 1 Package Drawing Codes

Package Name	Dimension	Таре	Reel
TMSOP-8	FM008-A-P-SD	FM008-A-C-SD	FM008-A-R-SD

3. Product name list

Table 2

Product Name	Package
S-5611AB1A-K8T5U	TMSOP-8

Pin Configurations

1. TMSOP-8

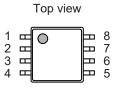


Figure 2

Pin No.	Symbol		Description	
4	VREF / SCL*1	VREF	Reference voltage I/O pin	
1	VREF / SCL ·	SCL	Serial clock input pin	
2	VOUT / SDA*2	VOUT	Output pin	
2	VOUT/SDA-	SDA	Serial data I/O pin	
3	VSS	GND pin		
4	TEST4*3	Test 4 pin		
5	VDD	Power su	pply pin	
6	TEST1 ^{*4}	Test 1 pin		
7	TEST2*4	Test 2 pin		
8	TEST3 ^{*4}	Test 3 pin		

Table 3

*1. The VREF / SCL pin combines the reference voltage I/O pin and the serial clock input pin.

***2.** The VOUT / SDA pin combines the output pin and the serial data I/O pin.

***3.** The TEST4 pin is shorted to the VSS pin (refer to **Figure 1**). Set the TEST4 pin open in use.

***4.** Set the TEST1 pin, the TEST2 pin, and the TEST3 pin open in use.

Absolute Maximum Ratings

Rev.1.0_01

Table 4

			(Ta = +25°C unless otherwise s	specified)
Item	Symbol	Applied Pin	Absolute Maximum Rating	Unit
Power supply voltage	V _{DD}	VDD	Vss - 0.3 to Vss + 6.5	V
	VREF	VREF / SCL	V _{SS} - 0.3 to V _{DD} + 0.3	V
	VSCL	VREF / SCL	V _{SS} - 0.3 to V _{DD} + 0.3	V
	Vout	VOUT / SDA	V _{SS} - 0.3 to V _{DD} + 0.3	V
Input / output voltage	VSDA	VOUT / SDA	V _{SS} - 0.3 to V _{DD} + 0.3	V
	VI/O	TEST1, TEST3	V _{SS} - 0.3 to V _{DD} + 0.3	V
		TEST2	Vss - 0.3 to Vss + 1.98	V
Junction temperature	Tj	-	-40 to +175	°C
Operation ambient temperature	Topr	-	-40 to +125	°C
Storage temperature	T _{stg}	-	-40 to +150	°C

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

■ Thermal Resistance Value

Table 5

Item	Symbol	Condition		Min.	Тур.	Max.	Unit
	Αιθ		Board A	-	160	-	°C/W
			Board B	-	133	-	°C/W
Junction-to-ambient thermal resistance*1			Board C	-	-	-	°C/W
			Board D	-	-	-	°C/W
			Board E	-	-	-	°C/W

*1. Test environment: compliance with JEDEC STANDARD JESD51-2A

Remark Refer to "■ **Power Dissipation**" and "**Test Board**" for details.

Electrical Characteristics

1. Linear Hall effect sensor operation

1.1 Power supply characteristics

Table	6
-------	---

(Ta = +25°C, V _{DD} = 5.0 V, V _{SS} = 0 V, V _{REF} = 2.5 V, S = 130 V/T, B = 0 mT, default value ^{*1} unless otherwise specified)								
ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit	
Power supply voltage	V _{DD}	-	4.5	5.0	5.5	V	-	
Current consumption	IDD	Ta = -40°C to +125°C (T _j = -40°C to +150°C)	-	19	22	mA	1	
UVLO release voltage	VUVLOR	-	4.15	4.30	4.45	V	1	
UVLO detection voltage	VUVLOD	-	3.95	4.10	4.25	V	1	
UVLO hysteresis voltage	VUVLOHYS	-	-	0.2	-	V	-	
UVLO detection delay time	tDELAY_UVLOD	-	-	1.0	-	ms	-	
Power-on reset threshold voltage	VPON	-	-	2.90	-	V	-	
Power-off threshold voltage	VPOFF	-	-	2.80	-	V	-	
Power-on reset hysteresis voltage	VPHYS	-	-	0.10	-	V	-	
Thermal shutdown detection temperature	T _{SD}	Junction temperature	-	170	-	°C	-	
Thermal shutdown release temperature	T _{SR}	Junction temperature	-	155	-	°C	-	
Start up time	t PON	C _{LOUT} = 4.7 nF, C _{LREF} = 47 nF	-	0.9	1.0	ms	-	

*1. The function settings and trimming adjustments of the IC are in the initial settings at the time of shipment.

PROGRAMMABLE, FAST-RESPONSE, LINEAR HALL EFFECT SENSOR IC S-5611A

Magnetic characteristics 1.2

Rev.1.0_01

Table 7

(Ta = +25°C, V _D	_D = 5.0 V,	V _{SS} = 0 V, V _{REF} = 2.5 V, S = 130 V/T	⁻ , B = 0 mT, def	ault va	ue ^{*1} ur	less ot	herwise s	
ltem	Symbol	Condition		Min.	Тур.	Max.	Unit	Test Circuit
Maximum magnetic flux density ^{*2}	Вмах	At minimum magnetic sensitivity se	tting	±350	-	-	mT	1
Sensitivity linearity error	LIN	Ta = -40°C to +125°C (T _j = -40°C to	o +150°C)	-0.5	-	0.5	%	1
Sensitivity	S	Initial settings at shipment		-	130	-	V/T	-
Sensitivity programming range	Srng	-	6	-	180	V/T	1	
Sensitivity	SSTEP	Formula A (S@n + 1 [LSB] - S@n [LSB]) / S@	-	0.08	0.15	%	1	
programming step	USTEP	Formula B (S@n + 1 [LSB] - S@n [LSB]) / S@				0.30	%	1
Sensitivity thermal drift	TCS	Ta = -40°C to +125°C (Tj = -40°C to	o +150°C)	-200	0	200	ppm/°C	1
Sensitivity thermal drift programming range	TCS _{RNG}	Ta = -40°C to +125°C (T _j = -40°C to +150°C)			-	500	ppm/°C	1
Sensitivity thermal drift programming step	TCSSTEP	Ta = -40°C to +125°C (T _j = -40°C to +150°C)			25	-	ppm/°C	-
		$C_{LOUT} = 4.7 \text{ nF}, C_{LREF} = 47 \text{ nF},$	f_{BW} = 400 kHz	-	1.25	2.50	μs	1
Output response time	trsp_out	B = 10 mT,	f _{BW} = 200 kHz	-	2.50	3.75	μs	1
		time from B 90% to Vout 90%	f_{BW} = 100 kHz	-	5.00	6.00	μs	1
	t _{RAC_OUT}	$C_{LOUT} = 4.7 \text{ nF}, C_{LREF} = 47 \text{ nF},$	f_{BW} = 400 kHz	-	0.75	1.75	μs	1
Output reaction time		B = 10 mT,	f_{BW} = 200 kHz	-	1.25	2.00	μs	1
		time from B 10% to V _{OUT} 10%	f_{BW} = 100 kHz	-	2.00	3.00	μs	1
		$C_{LOUT} = 4.7 \text{ nF}, C_{LREF} = 47 \text{ nF},$	f _{BW} = 400 kHz	-	2.5	5.0	μs	1
Output settling time*2	t _{SET_OUT}	B = 10 mT, time from V_{OUT} 10% to stabilization	f _{BW} = 200 kHz	-	4.0	6.5	μs	1
		within 3% of V_{OUT} steady status	f_{BW} = 100 kHz	-	5.5	8.0	μs	1
Output overshoot*2	OS	$C_{LOUT} = 4.7 \text{ nF}, C_{LREF} = 47 \text{ nF}, B = overshoot against V_{OUT} steady state$		-	-	10	%	1
Frequency bandwidth	f _{BW}	nitial settings at shipment, $C_{LOUT} = 4.7 \text{ nF}, C_{LREF} = 47 \text{ nF},$ requency with a magnetic sensitivity of -3 dB			400	-	kHz	-
Fragueney benduidth				-	400	-	kHz	-
Frequency bandwidth programming range	f _{BWRNG}	$C_{LOUT} = 4.7 \text{ nF}, C_{LREF} = 47 \text{ nF},$ frequency with a magnetic sensitivit	v of -3 dB	-	200	-	kHz	-
programming range			.y 01 -0 0D	-	100	-	kHz	-

____ *4

*1. The function settings and trimming adjustments of the IC are in the initial settings at the time of shipment.

*2. This item is guaranteed by design.

Remark The unit of magnetic density mT can be converted by using the formula 1 mT = 10 Gauss.

1.3 Output voltage characteristics

Table 8

+25°C, V _{DD} = 5.0 V, V _{SS} = 0 V, V _{REF} = 2.5 V, S = 130 V/T, B = 0 mT, default value*1 unless otherwise specified)	ļ
---	---

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Output offset voltage	Voff	Initial settings at shipment	-	0	-	mV	1
Output offset voltage programming range	Voffrng	-	-100	I	100	mV	1
Output offset voltage programming step	Voffstep	-	-	0.6	1.5	mV	1
Output offset voltage thermal drift	TCVOFF	Ta = -40°C to +125°C (T _j = -40°C to +150°C)	-0.075	0	0.075	mV/°C	1
Output voltage "H"	Vout_h	Ta = -40°C to +125°C (T _j = -40°C to +150°C)	4.85	-	-	V	1
Output voltage "L"	Vout_l	Ta = -40°C to +125°C (T _j = -40°C to +150°C)	-	-	0.15	V	1
Output source current	lout_soc	V _{OUT} = V _{SS}	17	22	27	mA	2
Output sink current	IOUT_SNK	$V_{OUT} = V_{DD}$	17	22	27	mA	2
Output resistance	Rout	I _{OUT} = ±1.25 mA, Ta = -40°C to +125°C (T _i = -40°C to +150°C)	-	1	4	Ω	3
Output pin load resistance	RLOUT	Connected between the VOUT pin and the VSS pin, Ta = -40°C to +125°C (T _j = -40°C to +150°C)	2	-	-	kΩ	-
Output pin load capacitance	CLOUT	Connected between the VOUT pin and the VSS pin, Ta = -40°C to +125°C (T _j = -40°C to +150°C)	0	4.7	6.0	nF	-
Input magnetic flux density referred noise voltage	B _{NOISE}	f = 10 kHz	-	0.09	-	µT/√Hz	-
		f _{BW} = 400 kHz		1.89	-	mV _{rms}	-
Output noise voltage	$V_{\text{NOISE}_\text{RMS}}$	S = 30 V/T $f_{BW} = 200 \text{ kHz}$		1.40	-	mV _{rms}	-
		f _{BW} = 100 kHz	-	1.08	-	mV _{rms}	-

*1. The function settings and trimming adjustments of the IC are in the initial settings at the time of shipment.

1.4 Reference voltage characteristics

Rev.1.0_01

Table 9

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Reference voltage output mode	-					-	
Reference voltage output	VREF	Initial settings at shipment	2.48	2.50	2.52	V	1
		V _{REF} = 2.50 V	-	2.50	-	V	1
Deference voltage programming range	V	V _{REF} = 1.65 V	-	1.65	-	V	1
Reference voltage programming range	Vrefrng	V _{REF} = 1.50 V	-	1.50	-	V	1
		V _{REF} = 0.50 V	I	0.50	-	V	1
Reference voltage programming step	VREFSTEP	V _{REF} = 2.50 V	I	2.5	4.0	mV	1
Poforonce voltage thermal drift	Ta	V _{REF} = 2.5 V / 1.65 V / 1.5 V, Ta = -40°C to +125°C (Tj = -40°C to +150°C)	-100	0	100	ppm/°C	1
Reference voltage thermal drift	TCVREF	V _{REF} = 0.5 V, Ta = -40°C to +125°C (Tj = -40°C to +150°C)	-150	0	150	ppm/°C	1
Reference voltage source current	IREF_SOC	V _{REF} = V _{SS}	0.30	0.36	0.50	mA	4
Reference voltage sink current	IREF_SNK	V _{REF} = V _{DD}	10.0	12.0	14.0	mA	4
Reference voltage output resistance	R _{REF}	I _{REF} = ±12.5 μA, Ta = -40°C to +125°C (T _i = -40°C to +150°C)	160	200	280	Ω	5
Reference voltage output pin load resistance	Rlref	Connected between the VREF pin and the VSS pin, Ta = -40°C to +125°C (T _j = -40°C to +150°C)	200	-	-	kΩ	-
Reference voltage output pin load capacitance	C _{LREF}	Connected between the VREF pin and the VSS pin, Ta = -40°C to +125°C (T_j = -40°C to +150°C)	-	47	-	nF	-
Reference voltage input mode							
Reference voltage input	V _{REFIN}	-	0.50	-	2.65	V	5
Reference voltage input leakage current	I _{IN_REF}	V _{REF} = 0 V to 2.65 V	-	0.1	-	μA	-

*1. The function settings and trimming adjustments of the IC are in the initial settings at the time of shipment.

2. Serial communication operations

2.1 Pin capacitance

Table 10

		(Ta = +25°C, V _{DD}	= 5.0 V, Vss	= 0 V unle	ss otherwise	e specified)
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
SCL pin input capacitance	CIN_SCL	-	-	1	-	pF
SDA pin I/O capacitance	CI/O SDA	_	_	1	-	pF

2.2 Memory characteristics

Table 11

		(Ta	= +25°C, V _{DD} :	= 5.0 V, Vs	s = 0 V u	nless othe	rwise specified)
Item	Symbol	Condition	l	Min.	Тур.	Max.	Unit
Endurance	Nw	-		1000	-	-	cycle / word*1
Data retention			T _j = +25°C	15	-	-	year
		005 days 04 haves*2	T _j = +125°C	10	-	-	year
	-	365 days, 24 hours* ²	T _j = +150°C	3	-	-	year
			T ₁ = +175°C	1	_	-	vear

***1.** For each address (Word: 8-bit)

*2. In the case where temperature changes occur over time, such as in a temperature cycle, this is the accumulated value of the time the IC is at high temperature.

2.3 DC Electrical Characteristics

Table 12

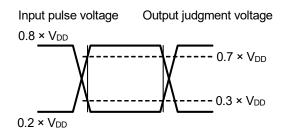
(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

		(1a - 125 O, VDD	- 0.0 V, V35			opoomou
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
High level input voltage	Vih_scl, Vih_sda	SCL pin ^{*1} , SDA pin	$0.7 \times V_{DD}$	-	V _{DD} + 0.3	V
Low level input voltage	V _{IL_SCL} , V _{IL_SDA}	SCL pin, SDA pin	-0.3	-	$0.3 \times V_{DD}$	V
	I _{IH_SCL}	SCL pin, V _{SCL} = V _{DD}	-	0.1	1.0	μA
Input leakage current	IIL_SCL	SCL pin, V _{SCL} = V _{SS}	-	0.1	1.0	μA
	I _{IH_SDA}	SDA pin, V _{SDA} = V _{DD}	-	0.1	1.0	μA
Pull-up resistor*2	R _{PU_SDA}	SDA pin	320	380	460	Ω
Low level output current	I _{OL_SDA}	SDA pin, V _{SDA} = 0.6 V	8	12	-	mA

*1. The voltage at the SCL pin is also used to disengage from the serial communication operation mode.

*2. Current flows through the pull-up resistor during the period when the SDA pin is set to "L" during serial communication operation mode.

Note that this increases the amount of current consumed from the VDD pin by the current of $\frac{V_{DD}}{R_{PU_SDA}}$ A in addition to the current consumption (I_{DD}) of the linear Hall effect sensor operation mode.


2.4 AC Electrical Characteristics

Rev.1.0_01

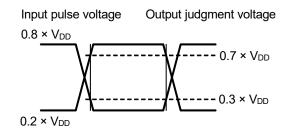
2. 4. 1 Output load = 100 pF (SCL clock frequency ≤ 400 kHz)

Table 13 Measurement Conditions

Input pulse voltage	$0.2 \times V_{DD}$ to $0.8 \times V_{DD}$
Input pulse rising / falling time	20 ns or less
Output judgment voltage	$0.3 \times V_{DD}$ to $0.7 \times V_{DD}$
Output load	100 pF

Figure 3 Input / Output Waveform during AC Measurement

Table 14


	(Ta = +	+25°C, V _{DD} = 5	5.0 V, Vss = 0 \	/ unless other	wise specified)
Item	Symbol	Min.	Тур.	Max.	Unit
SCL clock frequency	fscl	-	-	400	kHz
SCL clock time "L"	tLOW	1300	-	-	ns
SCL clock time "H"	tнigн	600	-	-	ns
SCL, SDA rising time*1	t _R	-	-	300	ns
SCL, SDA falling time ^{*1}	t⊨	-	-	300	ns
Data input setup time	tsu.dat	100	-	-	ns
Data input hold time	thd.dat	0	-	-	ns
Data output delay time	t _{AA}	100	-	1100	ns
Data output hold time	t _{DH}	50	-	-	ns
Start condition setup time	tsu.sta	600	-	-	ns
Start condition hold time	thd.sta	600	-	-	ns
Stop condition setup time	tsu.sto	600	-	_	ns
Bus release time	t BUF	13	_	_	ms
Noise suppression time	tı	-	50	-	ns

*1. This item is guaranteed by design.

2. 4. 2 Output load = 4.7 nF (SCL clock frequency ≤ 100 kHz)

Table 15 Measurement Conditions

Input pulse voltage	$0.2 \times V_{DD}$ to $0.8 \times V_{DD}$
Input pulse rising / falling time	1.0 µs or less
Output judgment voltage	$0.3 \times V_{DD}$ to $0.7 \times V_{DD}$
Output load	4.7 nF

Figure 4 Input / Output Waveform during AC Measurement

Table 16

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

	1				
Item	Symbol	Min.	Тур.	Max.	Unit
SCL clock frequency	fscl	-	-	100	kHz
SCL clock time "L"	t _{LOW}	5.7	-	-	μs
SCL clock time "H"	tніgн	2.3	-	-	μs
SCL, SDA rising time ^{*1}	t _R	-	-	1.0	μs
SCL, SDA falling time ^{*1}	tF	-	-	1.0	μs
Data input setup time	tsu.dat	0.25	-	-	μs
Data input hold time	thd.dat	0	-	-	μs
Data output delay time	t _{AA}	0.1	-	5.45	μs
Data output hold time	t _{DH}	0.05	-	-	μs
Start condition setup time	tsu.sta	4.0	-	-	μs
Start condition hold time	thd.sta	4.0	-	-	μs
Stop condition setup time	tsu.sto	4.0	-	_	μs
Bus release time	t _{BUF}	13	-	_	ms
Noise suppression time	tı	-	50	-	ns

***1.** This item is guaranteed by design.

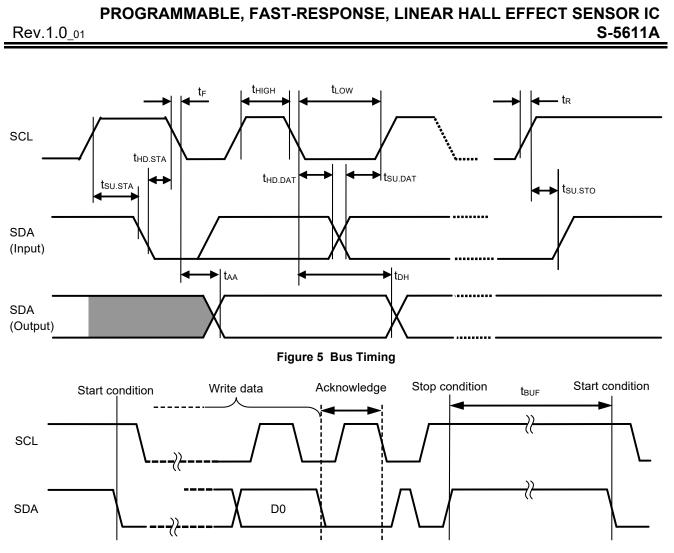


Figure 6 Write Cycle Timing

Test Circuits

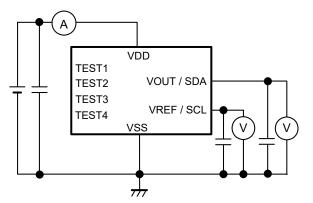


Figure 7 Test Circuit 1

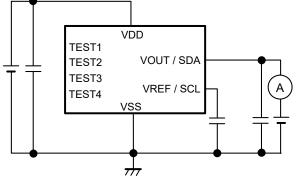


Figure 8 Test Circuit 2

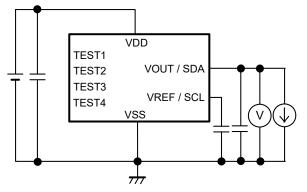


Figure 9 Test Circuit 3

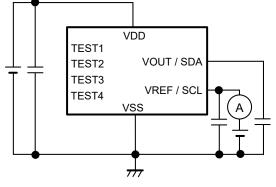


Figure 10 Test Circuit 4

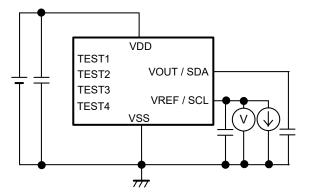


Figure 11 Test Circuit 5

Standard Circuits

1. Reference voltage output mode

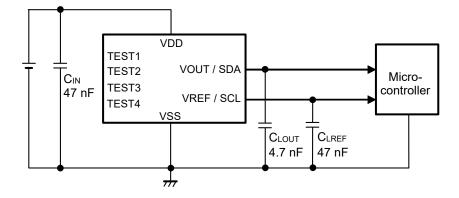


Figure 12 Standard Circuit (Reference Voltage Output Mode)

2. Reference voltage input mode

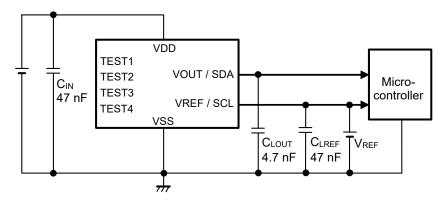
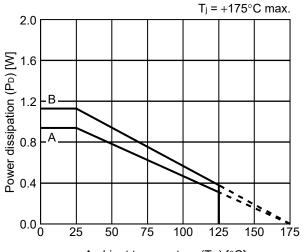


Figure 13 Standard Circuit (Reference Voltage Input Mode)

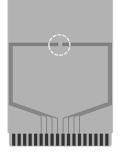

Caution The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation using the actual application to set the constants.

Precautions

- Do not operate these ICs in excess of the absolute maximum ratings. Attention should be paid to the power supply voltage, especially. The surge voltage which exceeds the absolute maximum ratings can cause latch-up and malfunction. Perform operations after confirming the detailed operation condition in the data sheet.
- If the impedance of the power supply is high, the IC may malfunction due to a supply voltage drop caused by feedthrough current. Take care with the pattern wiring to ensure that the impedance of the power supply is low.
- Note that the IC may malfunction if the power supply voltage rapidly changes. When the IC is used under the environment
 where the power supply voltage rapidly changes, it is recommended to judge the output voltage of the IC by reading it
 multiple times.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- The application conditions for the power supply voltage and the output resistor should not exceed the power dissipation.
- Large stress on this IC may affect the magnetic characteristics. Avoid large stress which is caused by the handling during or after mounting the IC on a board.
- Since the package heat radiation differs according to the conditions of the application, perform thorough evaluation with actual applications to confirm no problems occur.
- ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.

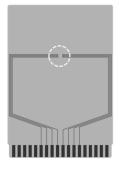
Power Dissipation

TMSOP-8

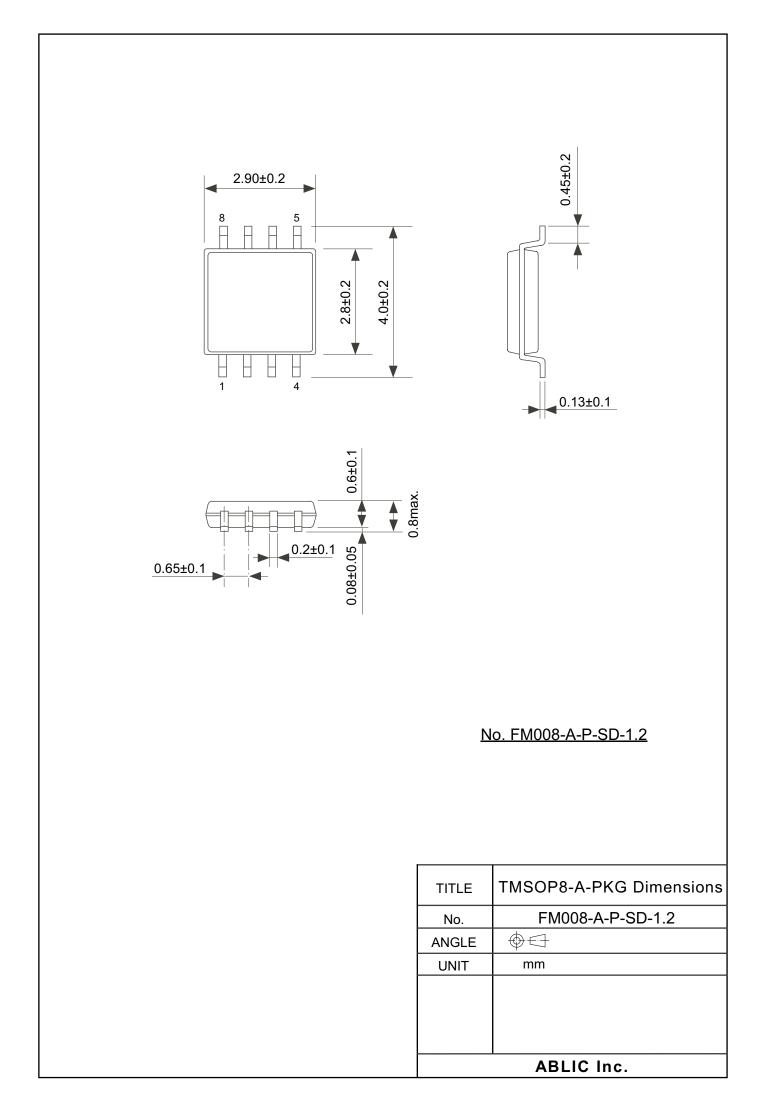

Ambient temperature (Ta) [°C]

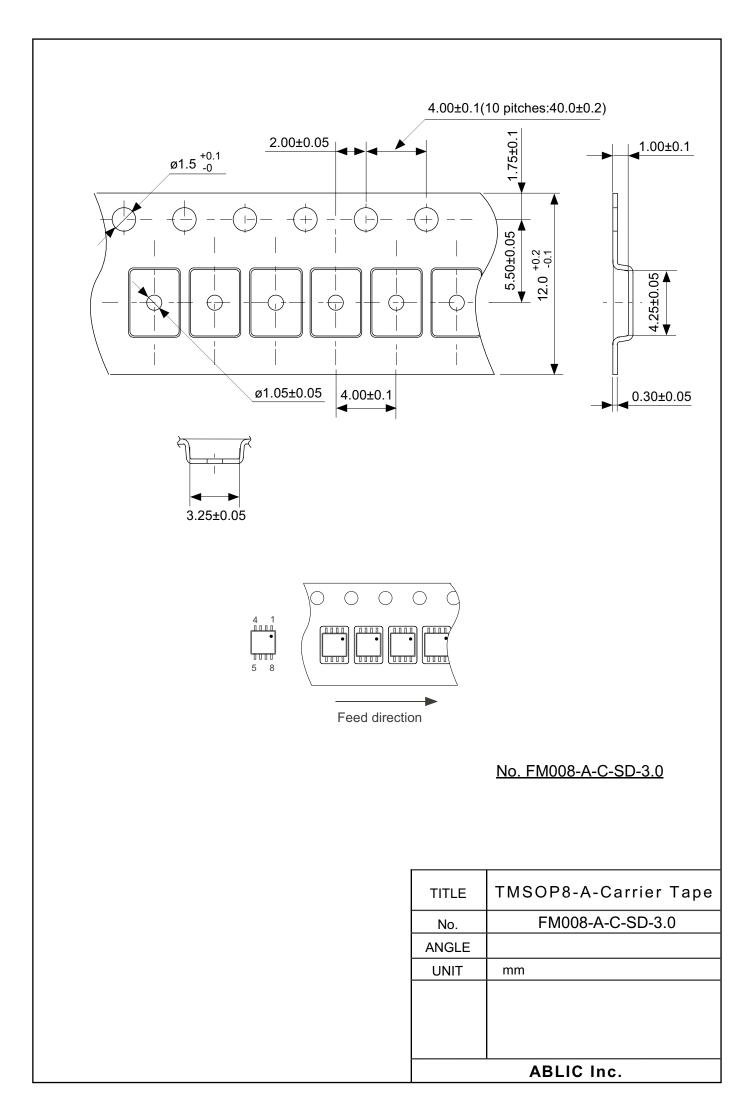
Board	Power Dissipation (P _D)
Α	0.94 W
В	1.13 W
С	-
D	-
E	-

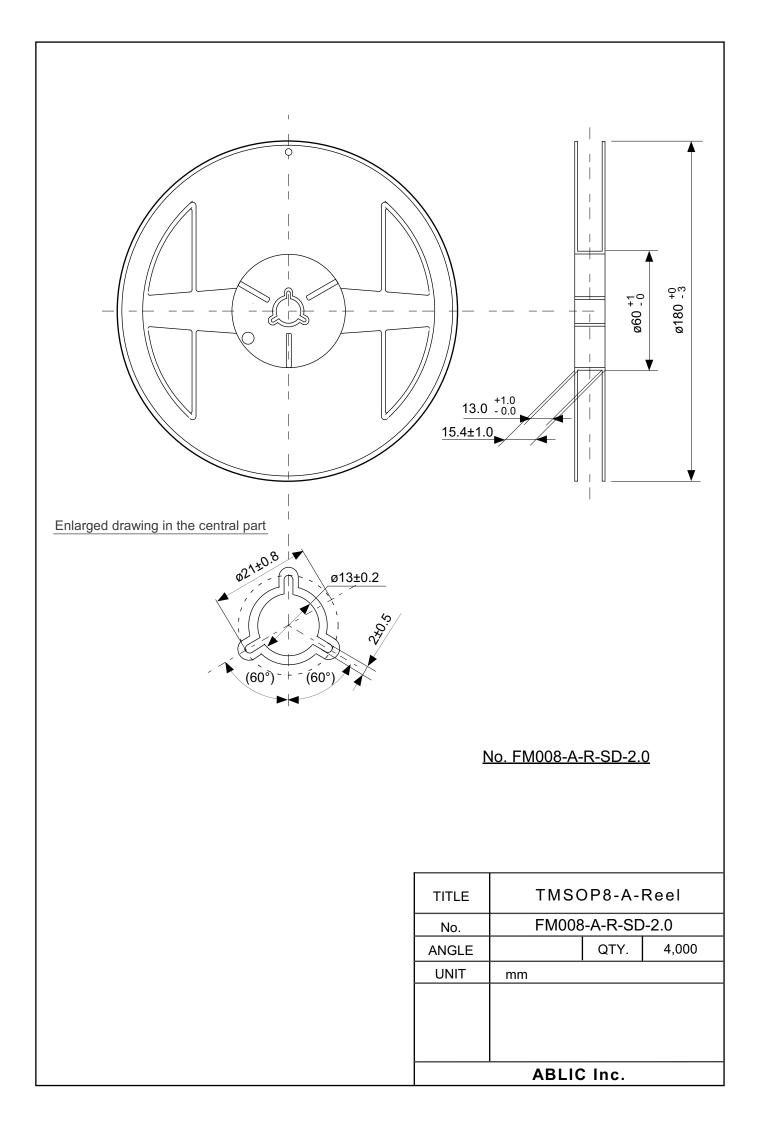
TMSOP-8 Test Board


(1) Board A

🔘 IC Mount Area


Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		2
Connon foil lours [mm]	1	Land pattern and wiring for testing: t0.070
	2	-
Copper foil layer [mm]		
	4	74.2 x 74.2 x t0.070
Thermal via		-


(2) Board B



Item		Specification			
Size [mm]		114.3 x 76.2 x t1.6			
Material		R-4			
Number of copper foil layer		4			
	1	Land pattern and wiring for testing: t0.070			
	2	74.2 x 74.2 x t0.035			
Copper foil layer [mm]	3	74.2 x 74.2 x t0.035			
	4	74.2 x 74.2 x t0.070			
Thermal via		-			

No. TMSOP8-A-Board-SD-1.0

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein.
- 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein.
- 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges.
- 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products.
- 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.

The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility.

- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc.
- 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative.
- 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.

2.4-2019.07